Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; 20(32): e2311166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693075

RESUMO

Thermoresponsive nanogels (tNGs) are promising candidates for dermal drug delivery. However, poor incorporation of hydrophobic drugs into hydrophilic tNGs limits the therapeutic efficiency. To address this challenge, ß-cyclodextrins (ß-CD) are functionalized by hyperbranched polyglycerol serving as crosslinkers (hPG-ßCD) to fabricate ßCD-tNGs. This novel construct exhibits augmented encapsulation of hydrophobic drugs, shows the appropriate thermal response to dermal administration, and enhances the dermal penetration of payloads. The structural influences on the encapsulation capacity of ßCD-tNGs for hydrophobic drugs are analyzed, while concurrently retaining their efficacy as skin penetration enhancers. Various synthetic parameters are considered, encompassing the acrylation degree and molecular weight of hPG-ßCD, as well as the monomer composition of ßCD-tNGs. The outcome reveals that ßCD-tNGs substantially enhance the aqueous solubility of Nile Red elevating to 120 µg mL-1 and augmenting its dermal penetration up to 3.33 µg cm-2. Notably, the acrylation degree of hPG-ßCD plays a significant role in dermal drug penetration, primarily attributed to the impact on the rigidity and hydrophilicity of ßCD-tNGs. Taken together, the introduction of the functionalized ß-CD as the crosslinker in tNGs presents a novel avenue to enhance the efficacy of hydrophobic drugs in dermatological applications, thereby offering promising opportunities for boosted therapeutic outcomes.


Assuntos
Glicerol , Interações Hidrofóbicas e Hidrofílicas , Nanogéis , Polímeros , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Glicerol/química , Nanogéis/química , Polímeros/química , Animais , Polietilenoimina/química , Reagentes de Ligações Cruzadas/química , Temperatura , Absorção Cutânea , Pele/metabolismo , Polietilenoglicóis/química , Oxazinas
2.
FASEB J ; 37(11): e23241, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847512

RESUMO

Cementum, a constituent part of periodontal tissues, has important adaptive and reparative functions. It serves to attach the tooth to alveolar bone and acts as a barrier delimit epithelial growth and bacteria evasion. A dynamic and highly responsive cementum is essential for maintaining occlusal relationships and the integrity of the root surface. It is a thin layer of mineralized tissue mainly produced by cementoblasts. Cementoblasts are osteoblast-like cells essential for the restoration of periodontal tissues. In recent years, glucose metabolism has been found to be critical in bone remodeling and osteoblast differentiation. However, the glucose metabolism of cementoblasts remains incompletely understood. First, immunohistochemistry staining and in vivo tracing with 18 F-fluorodeoxyglucose (18 F-FDG) revealed significantly higher glucose metabolism in cementum formation. To test the bioenergetic pathways of cementoblast differentiation, we compared the bioenergetic profiles of mineralized and unmineralized cementoblasts. As a result, we observed a significant increase in the consumption of glucose and production of lactate, coupled with the higher expression of glycolysis-related genes. However, the expression of oxidative phosphorylation-related genes was downregulated. The verified results were consistent with the RNA sequencing results. Likewise, targeted energy metabolomics shows that the levels of glycolytic metabolites were significantly higher in the mineralized cementoblasts. Seahorse assays identified an increase in glycolytic flux and reduced oxygen consumption during cementoblast mineralization. Apart from that, we also found that lactate dehydrogenase A (LDHA), a key glycolysis enzyme, positively regulates the mineralization of cementoblasts. In summary, cementoblasts mainly utilized glycolysis rather than oxidative phosphorylation during the mineralization process.


Assuntos
Cemento Dentário , Ácido Láctico , Diferenciação Celular , Imuno-Histoquímica , Glucose
3.
Cell Commun Signal ; 22(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167023

RESUMO

BACKGROUND: Cementoblasts on the tooth-root surface are responsible for cementum formation (cementogenesis) and sensitive to Porphyromonas gingivalis stimulation. We have previously proved transcription factor CXXC-type zinc finger protein 5 (CXXC5) participates in cementogenesis. Here, we aimed to elucidate the mechanism in which CXXC5 regulates P. gingivalis-inhibited cementogenesis from the perspective of mitochondrial biogenesis. METHODS: In vivo, periapical lesions were induced in mouse mandibular first molars by pulp exposure, and P. gingivalis was applied into the root canals. In vitro, a cementoblast cell line (OCCM-30) was induced cementogenesis and submitted for RNA sequencing. These cells were co-cultured with P. gingivalis and examined for osteogenic ability and mitochondrial biogenesis. Cells with stable CXXC5 overexpression were constructed by lentivirus transduction, and PGC-1α (central inducer of mitochondrial biogenesis) was down-regulated by siRNA transfection. RESULTS: Periapical lesions were enlarged, and PGC-1α expression was reduced by P. gingivalis treatment. Upon apical inflammation, Cxxc5 expression decreased with Il-6 upregulation. RNA sequencing showed enhanced expression of osteogenic markers, Cxxc5, and mitochondrial biogenesis markers during cementogenesis. P. gingivalis suppressed osteogenic capacities, mitochondrial biogenesis markers, mitochondrial (mt)DNA copy number, and cellular ATP content of cementoblasts, whereas CXXC5 overexpression rescued these effects. PGC-1α knockdown dramatically impaired cementoblast differentiation, confirming the role of mitochondrial biogenesis on cementogenesis. CONCLUSIONS: CXXC5 is a P. gingivalis-sensitive transcription factor that positively regulates cementogenesis by influencing PGC-1α-dependent mitochondrial biogenesis. Video Abstract.


Assuntos
Cementogênese , Mitocôndrias , Biogênese de Organelas , Animais , Camundongos , Linhagem Celular , Cementogênese/genética , Cementogênese/fisiologia , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Mitocôndrias/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982864

RESUMO

Periodontitis is a chronic infectious disease worldwide that can cause damage to periodontal supporting tissues including gingiva, bone, cementum and periodontal ligament (PDL). The principle for the treatment of periodontitis is to control the inflammatory process. Achieving structural and functional regeneration of periodontal tissues is also essential and remains a major challenge. Though many technologies, products, and ingredients were applied in periodontal regeneration, most of the strategies have limited outcomes. Extracellular vesicles (EVs) are membranous particles with a lipid structure secreted by cells, containing a large number of biomolecules for the communication between cells. Numerous studies have demonstrated the beneficial effects of stem cell-derived EVs (SCEVs) and immune cell-derived EVs (ICEVs) on periodontal regeneration, which may be an alternative strategy for cell-based periodontal regeneration. The production of EVs is highly conserved among humans, bacteria and plants. In addition to eukaryocyte-derived EVs (CEVs), a growing body of literature suggests that bacterial/plant-derived EVs (BEVs/PEVs) also play an important role in periodontal homeostasis and regeneration. The purpose of this review is to introduce and summarize the potential therapeutic values of BEVs, CEVs and PEVs in periodontal regeneration, and discuss the current challenges and prospects for EV-based periodontal regeneration.


Assuntos
Vesículas Extracelulares , Periodontite , Humanos , Periodontite/terapia , Periodonto , Ligamento Periodontal , Células-Tronco
5.
Inflammation ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961014

RESUMO

Porphyromonas gingivalis (P. gingivalis) is one of the major pathogens causing periodontitis and apical periodontitis (AP). Long noncoding RNA (lncRNA) can regulate cellular mineralization and inflammatory diseases. The aim of this study was to investigate the role and mechanism of lncRNA in P. gingivalis-stimulated cementoblast mineralization. In vivo, C57BL/6 mice were divided into the healthy, the AP, and AP + P. gingivalis groups (n = six mice per group). Micro computed tomography, immunohistochemistry staining, and fluorescence in situ hybridization were used to observe periapical tissue. In vitro, cementoblasts were treated with osteogenic medium or P. gingivalis. Pluripotency associated transcript 3 (Platr3), interleukin 1 beta (IL1B), and osteogenic markers were analyzed by quantitative real-time polymerase chain reaction and western blot. RNA pull-down and RNA immunoprecipitation assays were used to detect proteins that bind to Platr3. RNA sequencing was performed in Platr3-silenced cementoblasts. In vivo, P. gingivalis promoted periapical tissue destruction and IL1B expression, but inhibited Platr3 expression. In vitro, P. gingivalis facilitated IL1B expression (P < 0.001), whereas suppressed the expression of Platr3 (P < 0.001) and osteogenic markers (P < 0.01 or 0.001). In contrast, Platr3 overexpression alleviated the repressive effect of P. gingivalis on cementoblast mineralization (P < 0.01 or 0.001). Furthermore, Platr3 bound to nudix hydrolase 21 (NUDT21) and regulated the nuclear factor-κB (NF-κB) signaling pathway. Knocking down NUDT21 suppressed osteogenic marker expression and activated the above signaling pathway. Collectively, the results elucidated that Platr3 mediated P. gingivalis-suppressed cementoblast mineralization through the NF-κB signaling pathway by binding to NUDT21.

6.
J Periodontol ; 94(2): 290-300, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35912930

RESUMO

BACKGROUND: Cementum regeneration was regarded as the critical goal for periodontal regeneration, and M2 macrophage-based therapy was expected to be a promising strategy. However, little is known about the effects of M2 macrophages on cementoblast mineralization and tropism, especially under inflammation. Here we investigated for the first time the crosstalk between M2 macrophages and Porphyromonas gingivalis (Pg)-stimulated cementoblasts. METHODS: M2 macrophages were induced with interleukin (IL)-4, and identified. CC-chemokine ligand 2 (CCL2) expression and secretion of inflammatory cementoblasts were detected by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), western blotting (WB), immunohistochemistry for apical periodontitis (AP) mice, and by enzyme-linked immunosorbent assay. Crystal violet staining was used to observe macrophage migration. Conditional medium (CM) and transwell coculture methods were applied to evaluate the effects of M2 macrophages on cementum mineralization with or without Pg, and to explore the mechanism. Mineralization-related markers and pathway-related proteins were measured by RT-qPCR and WB. RESULTS: M2 macrophages were identified successfully. We found an increase of CCL2 in cementoblasts and their supernatant. Also, higher CCL2 in cementoblasts was observed in the AP model. Superior recruitment of M2 macrophages to supernatant from Pg-stimulated cementoblasts or CCL2-containing medium was verified. Moreover, CM2 and Trans-M2 showed better mineralization-accelerating and rescuing effects when compared to their controls, and application of p38 inhibitor partially blocked the promotion. CONCLUSIONS: Our study demonstrated the inflammation-targeting and mineralization-promoting effects of M2 macrophages on cementoblasts, which may provide evidence for M2 macrophage-based cementum regeneration.


Assuntos
Cemento Dentário , Macrófagos , Camundongos , Animais , Cemento Dentário/metabolismo , Macrófagos/metabolismo , Movimento Celular , Inflamação
7.
J Oral Microbiol ; 15(1): 2236427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483640

RESUMO

Objectives: Casein kinase 2 interacting protein-1 (CKIP-1) is a versatile player involved in various biological processes. However, whether CKIP-1 mediates the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) under Porphyromonas gingivalis (Pg) stimulation remains unknown. Material and Methods: The effect of Pg on PDLC differentiation was first verified. CKIP-1 expression in Pg-infected PDLCs or in PDL of apical periodontitis (AP) mice was detected. The changes of CKIP-1 during PDLC differentiation was also determined. PDLC differentiation capacity in CKIP-1 knockout (KO) mice and CKIP-1-silenced PDLCs with or without Pg stimulation were further studied. Inhibitor was finally applied to verify the involvement of p38 signaling pathway in PDLC differentiation. Results: The suppression effect of Pg on PDLC differentiation was demonstrated. CKIP-1 increased in the PDL of AP mice and Pg-induced PDLCs, and decreased gradually during PDLC differentiation. Increased OSX and RUNX2 expression in PDL were observed in CKIP-1 KO mice. Also, CKIP-1 silencing facilitated and rescued Pg-inhibited PDLC differentiation. Inhibitor for p38 signaling pathway blocked CKIP-1 silencing-facilitated PDLC differentiation. Conclusions: CKIP-1 mediated the osteogenic/cementogenic differentiation of PDLCs partially through p38 signaling pathway, which may provide evidence for the regeneration of periodontal hard tissues damaged by Pg.

8.
Inflammation ; 46(5): 1997-2010, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37351817

RESUMO

As a chronic inflammatory disease, periodontitis involves many biological processes including autophagy. At the same time, casein kinase 2 interacting protein-1 (CKIP-1) was reported to play a role in regulation of inflammation. But whether CKIP-1 and autophagy interact in periodontitis remains unclear. In this paper, our research team verified the levels of CKIP-1 expression and autophagy increase in the periodontal tissues of a ligature-induced periodontitis mouse model. And this result was also confirmed in Porphyromonas gingivalis (Pg)-induced human gingival fibroblasts (HGF) and human periodontal ligament cells (PDLC). We also showed the autophagy level in periodontal tissues is higher in Ckip-1 knockout (KO) mice than wild type (WT). At the same time, CKIP-1 knockdown lentivirus was used in PDLC and HGF, and it was found that silencing CKIP-1 significantly activated autophagy. Unfortunately, the regulatory role of autophagy in periodontitis is still unclear. Then, the autophagy agonist Rapamycin and inhibitor 3-MA were used in a periodontitis mouse model to investigate periodontal tissue destruction. We found the inflammation in periodontal tissue was reduced when autophagy activated. All these conclusions have been verified both in vivo and in vitro experiments. Finally, our research proved that silencing CKIP-1 reduces the expression of inflammatory cytokines in Pg-induced PDLC and HGF by regulating autophagy. Overall, a new role for CKIP-1 in regulating periodontal tissue inflammation was demonstrated in our study, and it is possible to treat periodontitis by targeting the CKIP-1 gene.


Assuntos
Inflamação , Periodontite , Camundongos , Animais , Humanos , Inflamação/metabolismo , Periodontite/metabolismo , Gengiva/metabolismo , Citocinas/metabolismo , Porphyromonas gingivalis/metabolismo , Autofagia , Proteínas de Transporte/metabolismo
9.
Ann N Y Acad Sci ; 1523(1): 119-134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934292

RESUMO

Porphyromonas gingivalis is involved in the pathogenesis of multiple polymicrobial biofilm-induced inflammatory diseases, including apical periodontitis, and it triggers pyroptosis accompanied by robust inflammatory responses. Tet methylcytosine dioxygenase 1 (TET1), an epigenetic modifier enzyme, has been is correlated with inflammation, though an association of TET1 and P. gingivalis-related pyroptosis in cementoblasts and the molecular mechanisms has not been shown. Our study here demonstrated that P. gingivalis downregulated Tet1 expression and elicited CASP11- and GSDMD-dependent pyroptosis. Additionally, Tet1 mRNA silencing in cementoblasts appeared to result in a more severe pyroptotic phenotype, where levels of CASP11 and GSDMD cleavage, lactate dehydrogenase release, and IL-1ß and IL-18 production were significantly increased. Moreover, Tet1 overexpression resulted in blockade of pyroptosis activation accompanied by inflammation moderation. Further analyses revealed that TET1 modulated glycolysis, confirmed by the application of the specific inhibitor 2-deoxy-d-glucose (2-DG). The pyroptosis phenotype enhanced by Tet1 silencing was moderated by 2-DG upon P. gingivalis invasion. Taken together, these data show the effects and underlying mechanisms of TET1 on pyroptosis and inflammatory phenotype induced by P. gingivalis in cementoblasts, and provides insight into the involvement of P. gingivalis in apical periodontitis and, possibly, other inflammatory diseases.


Assuntos
Dioxigenases , Periodontite Periapical , Humanos , Piroptose , Porphyromonas gingivalis/metabolismo , Cemento Dentário/metabolismo , Inflamação/metabolismo , Glicólise , Dioxigenases/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-35338603

RESUMO

Inspired by the development of nanomedicine and nanotechnology, more and more possibilities in cancer theranostic have been provided in the last few years. Emerging therapeutic modalities like starvation therapy, chemodynamic therapy, and tumor oxygenation have been integrated with diagnosis, giving a plethora of theranostic nanoagents. Among all of them, nanogels (NGs) show superiority benefiting from their unique attributes: high stability, high water-absorption, large specific surface area, mechanical strength, controlled responsiveness, and high encapsulation capacity. There have been a vast number of investigations supporting various NGs combining drug delivery and multiple bioimaging techniques, encompassing photothermal imaging, photoacoustic imaging, fluorescent imaging, ultrasound imaging, magnetic resonance imaging, and computed tomography. This review summarizes recent advances in functional NGs for theranostic nanomedicine and discusses the challenges and future perspectives of this fast-growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imageamento por Ressonância Magnética/métodos , Nanogéis , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos
11.
Ann N Y Acad Sci ; 1516(1): 300-311, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35917205

RESUMO

Hypoxia often occurs in inflammatory tissues, such as tissues affected by periodontitis and apical periodontitis lesions. Mitochondrial biogenesis can be disrupted in hypoxia. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a core factor required for mitochondrial biogenesis. Cementoblasts are root surface lining cells that play an integral role in cementum formation. There is a dearth of research on the effect of hypoxia on cementoblasts and underlying mechanisms, particularly in relation to mitochondrial biogenesis during the hypoxic process. In this study, we found that the expression of hypoxia inducible factor-1α was elevated in apical periodontitis tissues in vivo. In contrast, periapical lesions exhibited a reduction of PGC-1α expression. For in vitro experiments, cobalt chloride (CoCl2 ) was used to induce hypoxia. We observed that CoCl2 -induced hypoxia suppressed the mineralization ability and mitochondrial biogenesis of cementoblasts, accompanied by abnormal mitochondria morphology. Furthermore, we found that CoCl2 blocked the p38 pathway, while it activated the Erk1/2 pathway, with the former upregulating the expression of PGC-1α, while the latter reversed the effects. Overall, our findings demonstrate that mitochondrial biogenesis, especially via PGC-1α, is impaired during cementogenesis in the context of CoCl2 -induced hypoxia, dependent on the mitogen-activated protein kinase signaling pathway.


Assuntos
Biogênese de Organelas , Periodontite Periapical , Cobalto , Cemento Dentário/metabolismo , Humanos , Hipóxia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1868(3): 118923, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33285176

RESUMO

The keystone pathogen Porphyromonas gingivalis (P. gingivalis) elicits inflammation and autophagy in periodontal tissues. Transcription factor CXXC-type zinc finger protein 5 (CXXC5) and various signals are sensitive to P. gingivalis invasion. Herein, we investigated the P. gingivalis-elicited autophagy activity, the contribution of CXXC5, and the involvement of signals in cementoblasts, tooth root surface cells crucial in periodontal and periapical regions. After coculture with P. gingivalis, cementoblasts exhibited inflammatory cytokine increase, light chain 3(LC3)-I/II conversion, autophagosome activation, and CXXC5 reduction. Cementoblasts with loss and gain of CXXC5 were developed. CXXC5 silencing suppressed autophagy and inflammation, thereby partially compensating for the effects of P. gingivalis, and vice versa. We then screened potential signals and verified the positive participation of Stat3/Akt/Erk networks through specific inhibitor employment. P. gingivalis and CXXC5 induced autophagy through Beclin1 and Atg5 activation. Intriguingly, Annexin V/PI assay and EdU detection revealed that P. gingivalis promoted apoptosis and repressed cell proliferation. In sum, coculture with P. gingivalis enhanced autophagy activity in cementoblasts, which was partially suppressed by CXXC5 downregulation and mediated by Jak/Stat3, PI3K-Akt, and Erk1/2 signaling. This process probably influenced cell apoptosis and proliferation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Cemento Dentário/citologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia , Técnicas Bacteriológicas , Técnicas de Cultura de Células , Linhagem Celular , Cemento Dentário/metabolismo , Cemento Dentário/microbiologia , Regulação para Baixo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos , Porphyromonas gingivalis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA