Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 50, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078498

RESUMO

BACKGROUND: Although cisplatin-based chemotherapy has been used as the first-line treatment for ovarian cancer (OC), tumor cells develop resistance to cisplatin during treatment, causing poor prognosis in OC patients. Studies have demonstrated that overactivation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is involved in tumor chemoresistance and that overexpression of microRNA-497 (miR497) may overcome OC chemotherapy resistance by inhibiting the mTOR pathway. However, the low transcriptional efficiency and unstable chemical properties of miR497 limit its clinical application. Additionally, triptolide (TP) was confirmed to possess a superior killing effect on cisplatin-resistant cell lines, partially through inhibiting the mTOR pathway. Even so, the clinical applications of TP are restricted by serious systemic toxicity and weak water solubility. RESULTS: Herein, whether the combined application of miR497 and TP could further overcome OC chemoresistance by synergically suppressing the mTOR signaling pathway was investigated. Bioinspired hybrid nanoparticles formed by the fusion of CD47-expressing tumor exosomes and cRGD-modified liposomes (miR497/TP-HENPs) were prepared to codeliver miR497 and TP. In vitro results indicated that the nanoparticles were efficiently taken up by tumor cells, thus significantly enhancing tumor cell apoptosis. Similarly, the hybrid nanoparticles were effectively enriched in the tumor areas and exerted significant anticancer activity without any negative effects in vivo. Mechanistically, they promoted dephosphorylation of the overactivated PI3K/AKT/mTOR signaling pathway, boosted reactive oxygen species (ROS) generation and upregulated the polarization of macrophages from M2 to M1 macrophages. CONCLUSION: Overall, our findings may provide a translational strategy to overcome cisplatin-resistant OC and offer a potential solution for the treatment of other cisplatin-resistant tumors.


Assuntos
Exossomos , MicroRNAs , Nanopartículas , Neoplasias Ovarianas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Diterpenos , Resistencia a Medicamentos Antineoplásicos , Compostos de Epóxi , Exossomos/metabolismo , Humanos , Lipossomos/farmacologia , MicroRNAs/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fenantrenos , Fosfatidilinositol 3-Quinases/metabolismo
2.
Naturwissenschaften ; 103(11-12): 95, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27830290

RESUMO

Reptiles have a long history of transitioning from terrestrial to semi-aquatic or aquatic environments that stretches back at least 250 million years. Within Archosauria, both living crocodylians and birds have semi-aquatic members. Closer to the root of Archosauria and within the closest relatives of the clade, there is a growing body of evidence that early members of those clades had a semi-aquatic lifestyle. However, the morphological adaptations to a semi-aquatic environment remain equivocal in most cases. Here, we introduce a new Middle Triassic (245-235 Ma) archosauriform, Litorosuchus somnii, gen. et sp. nov., based on a nearly complete skeleton from the Zhuganpo Member (Ladinian [241-235 Ma]) of the Falang Formation, Yunnan, China. Our phylogenetic analyses suggest that Litorosuchus is a stem archosaur closely related to the aberrant Vancleavea just outside of Archosauria. The well-preserved skeleton of L. somnii bears a number of morphological characters consistent with other aquatic-adapted tetrapods including: a dorsally directed external naris, tall neural spines and elongate chevrons in an elongated tail, a short and broad scapula, webbed feet, long cervical vertebrae with long slender ribs, and an elongated rostrum with long and pointed teeth. Together these features represent one of the best-supported cases of a semi-aquatic mode of life for a stem archosaur. Together with Vancleavea campi, the discovery of L. somnii demonstrates a growing body of evidence that there was much more diversity in mode of life outside Archosauria. Furthermore, L. somnii helps interpret other possible character states consistent with a semi-aquatic mode of life for archosauriforms, including archosaurs.


Assuntos
Organismos Aquáticos/classificação , Fósseis , Filogenia , Répteis/anatomia & histologia , Répteis/classificação , Adaptação Fisiológica , Animais , Biodiversidade , China , Especificidade da Espécie
3.
Int J Mol Sci ; 17(6)2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27231896

RESUMO

The adverse biological effect of nanoparticles is an unavoidable scientific problem because of their small size and high surface activity. In this review, we focus on nano-hydroxyapatite and TiO2 nanoparticles (NPs) to clarify the potential systemic toxicological effect and cytotoxic response of wear nanoparticles because they are attractive materials for bone implants and are widely investigated to promote the repair and reconstruction of bone. The wear nanoparticles would be prone to binding with proteins to form protein-particle complexes, to interacting with visible components in the blood including erythrocytes, leukocytes, and platelets, and to being phagocytosed by macrophages or fibroblasts to deposit in the local tissue, leading to the formation of fibrous local pseudocapsules. These particles would also be translocated to and disseminated into the main organs such as the lung, liver and spleen via blood circulation. The inflammatory response, oxidative stress, and signaling pathway are elaborated to analyze the potential toxicological mechanism. Inhibition of the oxidative stress response and signaling transduction may be a new therapeutic strategy for wear debris-mediated osteolysis. Developing biomimetic materials with better biocompatibility is our goal for orthopedic implants.


Assuntos
Substitutos Ósseos/química , Durapatita/efeitos adversos , Titânio/efeitos adversos , Materiais Biocompatíveis/química , Células Sanguíneas/efeitos dos fármacos , Humanos , Nanopartículas/efeitos adversos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Transdução de Sinais/efeitos dos fármacos
4.
Adv Sci (Weinh) ; 9(32): e2203523, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089659

RESUMO

T-cell engagers (TCEs) represent a breakthrough in hematological malignancy treatment but are vulnerable to antigen escape and lack a vaccination effect. The "immunologically cold" solid tumor presents substantial challenges due to intratumor heterogeneity and an immunosuppressive tumor microenvironment (TME). Here, a methoxy poly(ethylene glycol) (mPEG)-masked CD44×PD-L1/CD3 trispecific T-cell nanoengager loaded with the STING agonist c-di-AMP (CDA) (PmTriTNE@CDA) for the treatment of triple-negative breast cancer (TNBC) is rationally designed. PmTriTNE@CDA shows tumor-specific accumulation and is preferentially unmasked in response to a weakly acidic TME to prevent on-target off-tumor toxicity. The unmasked CD44×PD-L1/CD3 trispecific T-cell nanoengager (TriTNE) targets dual tumor-associated antigens (TAAs) to redirect CD8+ T cells for heterogeneous TNBC lysis while achieving PD-L1 blockade. PmTriTNE synergized with CDA to transform the cold tumor into a hot tumor, eradicate the large established TNBC tumor, and induce protective immune memory in a 4T1 orthotopic tumor model without causing obvious toxicity. PmTriTNE@CDA shows potent efficacy in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. This study serves as a proof-of-concept demonstration of a nanobased TCEs strategy to expand therapeutic combinations that previously could not be achieved due to systemic toxicity with the aim of overcoming TNBC heterogeneity and immunotherapy resistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antígeno B7-H1/uso terapêutico , Linhagem Celular Tumoral , Imunoterapia , Modelos Animais de Doenças , Fatores Imunológicos/uso terapêutico , Vacinação , Polietilenoglicóis/uso terapêutico , Microambiente Tumoral
5.
Int J Nanomedicine ; 15: 5561-5571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801704

RESUMO

PURPOSE: Platinum/paclitaxel-based chemotherapy is the strategy for ovarian cancer, but chemoresistance, inherent or acquired, occurs and hinders therapy. Therefore, further understanding of the mechanisms of drug resistance and adoption of novel therapeutic strategies are urgently needed. METHODS: In this study, we report that sphingosine-1-phosphate receptor-1 (S1PR1)-mediated chemoresistance for ovarian cancer. Then we developed nanoparticles with a hydrophilic PEG2000 chain and a hydrophobic DSPE and biodegradable CaP (calcium ions and phosphate ions) shell with pH sensitivity as a delivery system (CaP-NPs) to carry BAF312, a selective antagonist of S1PR1 (BAF312@CaP-NPs), to overcome the cisplatin (DDP) resistance of the ovarian cancer cell line SKOV3DR. RESULTS: We found that S1PR1 affected acquired chemoresistance in ovarian cancer by increasing the phosphorylated-signal transduction and activators of transcription 3 (P-STAT3) level. The mean size and zeta potential of BAF312@CaP-NPs were 116 ± 4.341 nm and -9.67 ± 0.935 mV, respectively. The incorporation efficiency for BAF312 in the CaP-NPs was 76.1%. The small size of the nanoparticles elevated their enrichment in the tumor, and the degradable CaP shell with smart pH sensitivity of the BAF312@CaP-NPs ensured the release of BAF312 in the acidic tumor niche. BAF312@CaP-NPs caused substantial cytotoxicity in DDP-resistant ovarian cancer cells by downregulating S1PR1 and P-STAT3 levels. CONCLUSION: We found that BAF312@CaP-NPs act as an effective and selective delivery system for overcoming S1PR1-mediated chemoresistance in ovarian carcinoma by inhibiting S1PR1 and P-STAT3.


Assuntos
Azetidinas/administração & dosagem , Compostos de Benzil/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética , Azetidinas/farmacocinética , Compostos de Benzil/farmacocinética , Fosfatos de Cálcio/química , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosforilação/efeitos dos fármacos , Polietilenoglicóis/química , Fator de Transcrição STAT3/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/metabolismo
6.
Biomaterials ; 212: 73-86, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108274

RESUMO

Given that there is no effective treatment method for lethality androgen-resistant prostate cancers (ARPC), herein we report a multifunctional gold-caged nanoparticle (PTX-PP@Au NPs) against ARPC through integrating functional organic/inorganic materials to exploit the superiors of gold particles such as photothermal effects (PTT), generating reactive oxygen species (photodynamic effects, PDT), carrying chemotherapeutic agents (chemotherapy effects, CT), and inhibiting ion channel. This synergistic PTT/PDT/CT platform consists of three components: i) the Pluronic-polyethylenimine assembling into micelles to encapsulate drugs and providing reduction sites for gold cage formation through a "green" method, ii) the gold cage with surface plasmon resonance peak at near-infrared (NIR) region in a broad window qualifying the PTT/PDT potentiality, iii) a chemotherapeutic agent paclitaxel (PTX) arresting the tumor cell cycle. As demonstrated, the system has remarkable performance on controlling drug release, blocking TRPV6 cation channel, enhancing cell cycle arrest, elevating temperature and generating ROS, thus improving cellular toxicity along with apoptosis, enhancing tumor targeting, and achieving the therapy to ARPC with low toxicity on liver function and minimal side effects to normal organs. Notably, both PTT and PDT effect are generated under single irradiation situation because of the broad absorbance window, along with limited skin damages. As a specific synergistic platform creatively integrating multiple treatment protocols with negative toxicity, PTX-PP@Au NPs provide a facile, effective, and broadly applicable strategy to deadly ARPC.


Assuntos
Antineoplásicos/uso terapêutico , Ouro/química , Hipertermia Induzida , Nanopartículas Metálicas/química , Fotoquimioterapia , Fototerapia , Polímeros/química , Neoplasias da Próstata/terapia , Androgênios/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Canais de Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Humanos , Raios Infravermelhos , Concentração Inibidora 50 , Masculino , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Nus , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Poloxâmero/química , Polietilenoimina/química , Neoplasias da Próstata/patologia , Neoplasias da Próstata/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Naturwissenschaften ; 93(4): 200-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16538373

RESUMO

A new Triassic archosaurian from China shows a number of aquatic specializations, of which the most striking is the extreme lateral compression of the long tail. Others that may also reflect aquatic adaptations include plate like scapula and coracoid, elongate neck with extremely long and slender ribs, and reduction of osteoderms. In contrast, its pelvic girdle and hind limb have no aquatic modifications. Anatomic features, taphonomy, and local geological data suggest that it may have lived in a coastal-island environment. This lifestyle, convergent with some Jurassic marine crocodyli-forms that lived at least 40 million years later and the saltwater species of extant Crocodylus, contradicts with the prevailing view that Triassic archosaurians were restricted to non-marine ecosystems. Its mosaic anatomy represents a previously unknown ecomorph within primitive archosaurians.


Assuntos
Fósseis , Vertebrados/anatomia & histologia , Animais , China , Paleontologia , Costelas/anatomia & histologia , Crânio/anatomia & histologia , Dente/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA