Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 18(1): 89, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527262

RESUMO

BACKGROUND: Farnesol is a sesquiterpene from propolis and citrus fruit that shows promising anti-bacterial activity for caries treatment and prevention, but its hydrophobicity limits the clinical application. We aimed to develop the novel polymeric micelles (PMs) containing a kind of derivative of farnesol and a ligand of pyrophosphate (PPi) that mediated PMs to adhere tightly with the tooth enamel. RESULTS: Farnesal (Far) was derived from farnesol and successfully linked to PEG via an acid-labile hydrazone bond to form PEG-hyd-Far, which was then conjugated to PPi and loaded into PMs to form the aimed novel drug delivery system, PPi-Far-PMs. The in vitro test about the binding of PPi-Far-PMs to hydroxyapatite showed that PPi-Far-PMs could bind rapidly to hydroxyapatite and quickly release Far under the acidic conditions. Results from the mechanical testing and the micro-computed tomography indicated that PPi-Far-PMs could restore the microarchitecture of teeth with caries. Moreover, PPi-Far-PMs diminished the incidence and severity of smooth and sulcal surface caries in rats that were infected with Streptococcus mutans while being fed with a high-sucrose diet. The anti-caries efficacy of free Far can be improved significantly by PPi-Far-PMs through the effective binding of it with tooth enamel via PPi. CONCLUSIONS: This novel drug-delivery system may be useful for the treatment and prevention of dental caries as well as the targeting therapy of anti-bacterial drugs in the oral disease.


Assuntos
Cariostáticos , Cárie Dentária , Durapatita , Farneseno Álcool/análogos & derivados , Micelas , Animais , Cariostáticos/química , Cariostáticos/farmacocinética , Cariostáticos/farmacologia , Cárie Dentária/tratamento farmacológico , Cárie Dentária/metabolismo , Cárie Dentária/patologia , Difosfatos/química , Difosfatos/farmacocinética , Difosfatos/farmacologia , Portadores de Fármacos , Durapatita/química , Durapatita/metabolismo , Farneseno Álcool/química , Farneseno Álcool/farmacocinética , Farneseno Álcool/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Dente Molar/efeitos dos fármacos , Dente Molar/ultraestrutura , Polietilenoglicóis/química , Ratos , Streptococcus mutans/efeitos dos fármacos
2.
J Sep Sci ; 40(12): 2629-2637, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28453223

RESUMO

Nano-sized molecularly imprinted polymers for tiliroside were successfully prepared by a precipitation polymerization method. Acrylamide, ethylene glycol dimethacrylate, azobisisobutyronitrile, and acetonitrile/dimethyl sulfoxide were used as functional monomer, cross-linker, initiator, and porogen, respectively. The structural features and morphological characterization of tiliroside-imprinted polymers were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The adsorption experiments indicated that the tiliroside-imprinted polymers exhibited high selective recognition property to tiliroside. Scatchard analysis indicated that the homogeneous-binding sites were formed in the polymers. The selectivity test revealed that the adsorption capacity and selectivity of polymers to tiliroside was significantly higher than that of rutin, astragalin, and kaempferol. Finally, the tiliroside-imprinted polymers were employed as adsorbents in solid-phase extraction for the extraction of tiliroside from the ethyl acetate extract of the flowers of Edgeworthia gardneri (wall.) Meisn. The results demonstrated that the extraction recoveries of tiliroside ranged from 69.3 to 73.5% by using tiliroside-imprinted polymers coupled with solid-phase extraction method. These results indicated that the tiliroside-based molecularly imprinted solid-phase extraction method was proven to be an effective technique for the separation and enrichment of tiliroside from natural medicines.


Assuntos
Flavonoides/isolamento & purificação , Flores/química , Impressão Molecular , Thymelaeaceae/química , Adsorção , Cromatografia Líquida de Alta Pressão , Polímeros , Extração em Fase Sólida
3.
J Chromatogr A ; 1634: 461675, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33189956

RESUMO

A novel multi-mode and chiral separation stationary phase co-modified with copolymer composed of N-isopropyl acrylamide (NIPAM) and aspartame was synthesized by atom transfer radical polymerization (ATRP) reaction. The synthetic material was evaluated using thermogravimetric analysis (TGA), Fourier transform infrared spectrometry (FT-IR) and elemental analysis (EA). Analytes including hydrophobic, hydrophilic, alkaline and acidic compounds were separated well using the prepared stationary phase named Sil-PPAM-NIPAM. Besides, the separation of chiral compounds proved that the developed column also has the potential of chiral separation ability. In summary, the prepared column possesses excellent hydrophilic interaction, ion exchange, reversed-phase and chiral separation modes during the separation of complex and chiral compounds.


Assuntos
Acrilamidas/química , Aspartame/química , Técnicas de Química Analítica/métodos , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Chromatogr A ; 1610: 460559, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31564563

RESUMO

Mussel-inspired polydopamine (PDA) based materials are attractive as stationary phase for open-tubular capillary electrochromatography (OT-CEC) due to their many fascinating properties. However, all of the existing strategies for fabricating PDA based OT-CEC columns are limited in aqueous solutions. Consequently, it is a challenge work to directly immobilize the hydrophobic functional materials onto the inner wall of PDA modified capillary. Herein, by using the organic amine-inducing co-deposition strategy, a novel preparative method was developed for in situ one-pot synthesis of PDA/octadecylamine (ODA) co-deposited coating inside capillary as OT-CEC stationary phase. The formation and morphology of the PDA/ODA co-deposited coating were characterized by field emission scanning electron microscopy, atomic force microscope, attenuated total reflectance Fourier transform infrared spectroscopy and contact angle measurements. The separation performance of the fabricated PDA/ODA modified columns was validated by the separation of alkylbenzenes and steroids, which could achieve baseline separation with high separation efficiency. Their separation was found to follow the reversed phase chromatographic retention mechanism. The co-deposited column showed good stability and long lifetime. The repeatability of the PDA/ODA co-deposited column was also evaluated, with the relative standard deviations for intra-day and inter-day runs less than 5% and column-to-column runs less than 6%.


Assuntos
Aminas/química , Eletrocromatografia Capilar/métodos , Indóis/química , Polímeros/química , Acetonitrilas/química , Soluções Tampão , Cromatografia de Fase Reversa , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Esteroides/análise
5.
J Chromatogr A ; 1628: 461436, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822976

RESUMO

In recent years, mussel-inspired polydopamine (PDA) based materials have been widely used as stationary phases for open-tubular capillary electrochromatography (OT-CEC) because of their various excellent properties. Nevertheless, the traditional synthesis routes of functionalized PDA-based capillary columns usually are time-consuming and limited in aqueous solutions. Herein, we report a facile and rapid route to prepare octadecylamine (ODA) functionalized PDA coated OT-CEC columns in organic solvents via a novel one-step in situ solvothermal-assisted coating strategy. Through this developed solvothermal-assisted approach, the growth rate of ODA/PDA coating was significantly speeded up and their hybrid coating process on the capillary inner surface could be rapidly completed in 60 min. The successful preparation of the solvothermal-assisted ODA/PDA hybrid coating were systematically characterized and confirmed by several methods. The influence of the preparation parameters on the formation of hybrid coating and the separation ability of the ODA/PDA modified columns were systematically explored. Consequently, the high-efficiency baseline separation of four kinds of neutral, acidic and basic analytes were achieved based on the ODA/PDA modified columns. The repeatability of the solvothermal-assisted ODA/PDA coated column was also studied, and the relative standard deviations for intra-day, inter-day and column-to-column were all less than 5%. Additionally, the solvothermal-assisted ODA/PDA modified column exhibited good stability and long lifetime.


Assuntos
Aminas/química , Eletrocromatografia Capilar/métodos , Indóis/química , Polímeros/química , Solventes/química , Temperatura , Acetonitrilas/química , Soluções Tampão , Eletro-Osmose , Halogenação , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
6.
J Chromatogr A ; 1627: 461423, 2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823118

RESUMO

A novel stationary phase co-modified with N-isopropyl acrylamide (NIPAM) and 3-aminophenylboronic acid copolymer on the silica was synthesized through atom transfer radical polymerization (ATRP) reaction for performing mixed-mode and boronate affinity chromatography. The prepared functionalized silica was characterized using Fourier transform infrared spectrometry (FT-IR), elemental analysis (EA) and thermogravimetric analysis (TGA), scanning electron micrographs (SEM) and Brunauer-Emmett-Teller (BET) measurements. The prepared column named Sil-PBA-NIPAM showed great separation performance for hydrophobic, hydrophilic, positional isomer, acidic and alkaline compounds. Besides, the mixture of cis-diol and non-cis-diol compounds was used to prove that the developed column also has potential to capture and enrich cis-diol compounds. The prepared column possesses merits of time-saving, high selectivity to cis-diol compounds and molecular-planarity selectivity compared with two commercial single-mode columns. The theoretical plates of material can reach to 57472 and the column has good hydrolysis stability and batch-to-batch reproducibility. In summary, the prepared column possesses good hydrophilicity, hydrophobicity, molecular-planarity selectivity and boronate affinity abilities for the analysis of various compounds.


Assuntos
Acrilamidas/química , Ácidos Borônicos/química , Cromatografia/métodos , Polímeros/química , Ácido Benzoico/análise , Cromatografia de Fase Reversa , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Fenóis/análise , Polimerização , Reprodutibilidade dos Testes , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
7.
J Chromatogr A ; 1618: 460904, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31992472

RESUMO

A novel chiral stationary phase (CSP) was prepared through the reaction of surface-initiated atom transfer radical polymerization (ATRP) by the copolymerization of thermoresponsive N-isopropylacrylamide (NIPAM) and ß-cyclodextrin (ß-CD) on the silica beads for high performance liquid chromatography (HPLC). X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were applied to characterize the surface property of modified silica. Thermoresponsive modulation for the effect on enantioselectivity were investigated with chiral reagents including 1-phenyl-1-propanol, styrene oxide, 2-phenylpropionic acid and commercial chiral drugs comprising ibuprofen and labetalol hydrochloride. The column efficiency was evaluated by chromatographic parameters including retention factor (k), selective factor (α), resolution (Rs), plate number (N) and peak tailing factor (Tf). The results showed that five chiral solutes could be separated on the prepared smart column. And the selectivity of these compounds could be modulated by regulating the column temperature. It was contributed to the thermoresponsive NIPAM assisting ß-CD to separate these chiral compounds. These results indicated that the thermoresponsive CSP would be a potential tool for separation of hydrophilic and hydrophobic chiral drugs and this paper provided a novel method for chiral separation in the future.


Assuntos
Acrilamidas/química , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e Hidrofílicas , Preparações Farmacêuticas/química , Espectroscopia Fotoeletrônica , Polimerização , Polímeros/química , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Temperatura , beta-Ciclodextrinas/química
8.
Nanoscale ; 10(37): 18064-18073, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30229779

RESUMO

In recent years, polydopamine (PDA) nanoparticles have attracted considerable attention in different research fields because of their many fascinating physicochemical properties. However, as an analogue of naturally occurring melanin, PDA nanoparticles (PDANPs) typically exhibit weak fluorescence properties. Herein, we report a facile one-pot method for synthesizing bright blue luminescent PDANPs through the redox modulation of PDA surface chemistry. The composition and morphology of the resultant NPs were systematically characterized by transmission electron microscopy and several spectroscopy methods, which verified the successful fabrication of PDANPs. More importantly, comparative chemical analysis of dopamine polymerization revealed the significant impacts of synthesis conditions and PDA surface chemistry on the luminescence properties of PDANPs. Remarkably, in addition to their excellent water-solubility, salt-tolerance and high photostability under extreme pH conditions, the as-prepared PDANPs possess the highest quantum yield (5.1%) among all the reported intrinsic fluorescent PDANPs. Moreover, based on the coordination interaction between phenolic hydroxyl groups of PDANPs and ferric ions (Fe3+), the synthesized PDANPs were successfully utilized as a turn-off sensing platform for sensitive and selective detection of Fe3+ without using any additional targeting molecules. Upon increasing the Fe3+ concentration in the range from 0.5 to 20 µM, the fluorescence intensity of PDANPs decreased linearly. The detection limit of Fe3+ was 0.15 µM. Finally, this fluorescent sensor was successfully used to determine Fe3+ in natural water samples, showing good prospects for practical applications and may pave the way for the development of new rational methodologies for further enhancing the intrinsic fluorescence of PDA and fabricating other novel fluorescent organic nanoparticles.


Assuntos
Indóis/química , Nanopartículas/química , Polímeros/química , Fluorescência , Ferro , Oxirredução
9.
Talanta ; 178: 299-307, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136826

RESUMO

In present study, magnetic molecularly imprinted polymers (MMIPs) were successfully prepared for specific recognition and selective enrichment of phloridzin from the leaves of Malus doumeri (Bois) A. Chev and rats' plasma. The magnetic Fe3O4 were prepared by the solvothermal reaction method and followed by the modification of TEOS and functionalization with APTES. Using functionalized Fe3O4 particles as the magnetic cores, phloridzin as template, ethylene glycol dimethacrylate (EGDMA) as cross-linker and 2,2-azobisisobutyonnitrile (AIBN) as initiator, the MMIPs were prepared through APTES to associate the template on the surface of the magnetic substrate. The structural features and morphological characterizations of MMIPs were performed by FT-IR, SEM, TEM, XRD, TGA and VSM. The adsorption experiments revealed that the MMIPs presented high selective recognition property to phloridzin. The selectivity experiment indicated that the adsorption capacity and selectivity of polymers to phloridzin was higher than that of baicalin and 2,3,5,4'-ttrahydroxy stilbene-2-O-ß-D-glucoside. Furthermore, the MMIPs were employed as adsorbents for extraction and enrichment of phloridzin from the leaves of M. doumeri and rats' plasma. The recoveries of phloridzin in the leaves of M. doumeri ranged from 81.45% to 90.27%. The maximum concentration (Cmax) of phloridzin in rats' plasma was detected as 12.19 ± 0.84µg/mL at about 15min after oral administration of phloridzin (200mg/kg). These results demonstrate that the prepared MMIPs are suitable for the selective adsorption of phloridzin from complex samples such as natural medical plants and biological samples.


Assuntos
Óxido Ferroso-Férrico/química , Impressão Molecular , Florizina/análise , Florizina/química , Polímeros/química , Polímeros/síntese química , Adsorção , Animais , Precipitação Química , Masculino , Florizina/sangue , Florizina/isolamento & purificação , Folhas de Planta/química , Polimerização , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Extração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA