Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Talanta ; 270: 125558, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183713

RESUMO

Deep eutectic solvents (DES), regarded as promising green solvents, have gained attention due to their distinctive properties, particularly in analytical chemistry. While the use of DES in solvent extraction and separation has been extensively studied, its application in the synthesis of adsorbents has just begun. Phenolic resin, with its polyhydroxy structure and stable spherical morphology, could serve as an effective as adsorbents for enrichment of active ingredients in herbal medicine. Designing adsorbents with high selectivity and adsorption capacity presents a critical challenge in the enrichment of active ingredients in herbal medicine. In this study, alcohol-based DESs were employed as regulators of morphology and structure instead of organic solvents, facilitating the creation of polyhydroxy structure, adjustable pores and high specific surface areas. The resulting DES-regulated porous phenolic resin demonstrated enhanced extraction and separation capacity for active ingredients compared to conventional spherical phenolic resin owing to the alcohol-based DES offering more interaction modes with the analytes.


Assuntos
Abietanos , Formaldeído , Fenóis , Polímeros , Salvia miltiorrhiza , Solventes/química , Salvia miltiorrhiza/química , Solventes Eutéticos Profundos , Porosidade , Extratos Vegetais/química , Etanol
2.
Int J Biol Macromol ; 222(Pt A): 429-437, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126812

RESUMO

We prepared a series of highly porous Polyrotaxane/sodium alginate, and Polyrotaxane/Chitosan foam alloys according to a sustainable pathway by using water as the only solvent. The foam alloys were further used as supporter materials for poly (ethylene glycol) (PEG) encapsulation, to fabricate shape-stable bio-based phase change materials (PCMs). The pore morphology and the internal interface between PEG and foam alloys were characterized by scanning electron microscope (SEM). Due to the good compatibility between foam alloys and PEG, the PCM performed perfect anti-leakage properties. The introduction of sodium alginate or Chitosan ensures the shape stability of the PCMs during the phase transition. The PCMs performed good cycle stability and showed ultra-high latent heat (171.6 J g-1-189.5 J g-1). Finally, we compared the typical indicators of this work with those reported in the literature, and the comparison highlighted that the present PCMs have the significant advantages: high melting enthalpy, convenient preparation and outstanding sustainability. Notably, the work provided a sustainable idea for the design of anti-leakage and shape-stable PEG-based PCMs.


Assuntos
Quitosana , Rotaxanos , Alginatos , Temperatura Alta , Polietilenoglicóis , Ligas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA