RESUMO
Graphene oxide (GO) and copper nanoparticles (Cu NPs) were incorporated to modulate and enhance the fluorescence properties of pegylated graphite phase carbon nitride (g-C3N4-PEG). Combined with the specific recognition capability of a molecular imprinted polymer (MIP), a highly sensitive and selective fluorescent molecular imprinted probe for dopamine detection was developed. The fluorescent g-C3N4-PEG was synthesized from melamine and modified with GO and Cu NPs to obtain GO/g-C3N4-PEG@Cu NPs. Subsequently, MIP was prepared on the surface of GO/g-C3N4-PEG@Cu NPs using dopamine as the template molecule. Upon elution of the template molecule, a dopamine-specific GO/g-C3N4-PEG@Cu NPs/MIP fluorescence probe was obtained. The fluorescence intensity of the probe was quenched through the adsorption of different concentrations of dopamine by the MIP, thus establishing a novel method for the detection of dopamine. The linear range of dopamine detection was from 5 × 10-11 to 6 × 10-8 mol L-1, with a detection limit of 2.32 × 10-11 mol L-1. The sensor was utilised for the detection of dopamine in bananas, achieving a spiked recovery rate between 90.3% and 101.3%. These results demonstrate that the fluorescence molecular imprinted sensor developed in this study offers a highly sensitive approach for dopamine detection in bananas.
Assuntos
Cobre , Dopamina , Corantes Fluorescentes , Grafite , Nanopartículas Metálicas , Musa , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Dopamina/análise , Grafite/química , Cobre/química , Cobre/análise , Musa/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Espectrometria de Fluorescência , Polímeros Molecularmente Impressos/química , Nitrilas/química , Limite de Detecção , Compostos de NitrogênioRESUMO
The key to developing sensors for chiral drug determination is to exclude interference from enantiomers. In this study, metal-organic frameworks (MOFs) and molecularly imprinted polymer (MIP) were introduced to prepare a chiral sensor for levofloxacin detection. The MIP was electropolymerised on the surface of the Cu/Fe-benzene-1,3,5-tricarboxylate MOF (Cu/Fe-BTC)-modified Au electrode using levofloxacin as a template molecule. After eluting the levofloxacin, a chiral sensor with recognition sites for levofloxacin was obtained. With this site as a switch, a novel method for detecting levofloxacin was established. Because of the enhanced recognition effect, the sensor can effectively exclude the enantiomeric interference of d-ofloxacin. Moreover, Cu/Fe-BTC can effectively amplify the current response signal and improve the sensitivity of the sensor. The linear range of the sensor was 5 to 4000 × 10-11 mol L-1, and the detection limit was 2.07 × 10-11 mol L-1. When applied to detecting levofloxacin in actual samples, the sensor showed a 92.7-109.8% recovery.
Assuntos
Estruturas Metalorgânicas , Impressão Molecular , Levofloxacino , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Polímeros Molecularmente ImpressosRESUMO
A highly sensitive kanamycin electrochemiluminescence (ECL) switch sensor was constructed. A signal element consisting of ordered mesoporous carbon loaded with indium oxide nanoparticles/carbon quantum dots (OMC/In2O3/C-dots) was assembled on the surface of a gold electrode. Then, a molecularly imprinted polymer (MIP) was prepared on the modified electrode surface using kanamycin as the template molecule and o-aminophenol as the functional monomer. After kanamycin elution, the prepared sensor retained specific kanamycin recognition sites. OMC/In2O3 effectively amplified the ECL signal of the C-dots, thereby enhancing the detection sensitivity, whereas kanamycin quenched the signal. Therefore, the imprinted sites acted as a switch, providing a new method for detecting kanamycin. Under the optimal experimental conditions, the concentration of kanamycin was proportional to the degree of ECL quenching within a linear range of 5-4500 × 10-12 mol L-1 at 0.8 V (vs. Ag/AgCl electrode electrode), and the detection limit was 5.8 × 10-13 mol L-1. When applied to the detection of kanamycin in actual samples, such as chicken, duck, pork, and milk, the recovery for spiked samples was in the range 92.7-110%.
Assuntos
Impressão Molecular , Nanopartículas , Pontos Quânticos , Canamicina , Carbono , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , OuroRESUMO
Understanding the mechanism of molecular self-assembly to form well-organized nanostructures is essential in the field of supramolecular chemistry. Particularly, amphiphilic copolymers incorporated with polyhedral oligomeric silsesquioxanes (POSSs) have been one of the most promising materials in material science, engineering, and biomedical fields. In this review, new ideas and research works which have been carried out over the last several years in this relatively new area with a main focus on their mechanism in self-assembly and applications are discussed. In addition, insights into the unique role of POSSs in synthesis, microphase separation, and confined size were encompassed. Finally, perspectives and challenges related to the further advancement of POSS-based amphiphilics are discussed, followed by the proposed design considerations to address the challenges that we may face in the future.
Assuntos
Compostos de Organossilício/química , Polímeros/química , Polímeros/síntese químicaRESUMO
Background: The association between psoriasis vulgaris and bullous pemphigoid (BP) remains largely unknown. Objectives: To investigate whether there is a causal effect between psoriasis vulgaris and BP. Methods: Two-sample bidirectional Mendelian randomization (MR) analyses were conducted using publicly released genome-wide association studies (GWAS) summary statistics. The GWAS summary statistics for BP were downloaded online from FinnGen Biobank Documentation of the R12 release, which includes 219 BP cases and 218,066 controls. The GWAS data for psoriasis vulgaris were extracted from Sakaue et al., which comprises 5072 cases and 478,102 controls. Single-nucleotide polymorphisms (SNPs) associated with exposure were selected as instrumental variables by performing additional quality control steps. The inverse-variance-weighted (IVW) method was used for the primary MR analyses, and the MR-Egger regression, weighted mode method, weighted median method, and simple mode were employed for sensitivity analyses. The MR-Egger intercept test and "leave-one-out" sensitivity analysis were performed to evaluate the horizontal pleiotropy and the potentially influential SNPs, respectively. Results: Genetically determined log odds of psoriasis vulgaris were associated with an increased risk of BP (IVW: odds ratio (OR) = 1.263, 95% confidence interval (CI): 1.013-1.575, P=0.038). Sensitivity analyses by the weighted mode (OR=1.255, 95%CI: 0.973-1.618, P=0.106), MR Egger (OR=1.315, 95%CI: 0.951-1.817, P=0.126), simple mode (OR=1.414, 95%CI: 0.823-2.429, P=0.234) and weighted median method (OR=1.177, 95%CI: 0.889-1.559, P=0.254) derived directionally consistent relationship between the genetically predicted log odds of psoriasis vulgaris and risks of developing BP. On the contrary, we found that genetically predicted BP had no significant effect on psoriasis vulgaris (IVW: OR=0.996, P= 0.707), indicating the unidirectionality of the relationship. MR-Egger intercept tests showed no evidence of horizontal pleiotropy. No influential SNP driving the results was detected by the leave-one-out sensitivity analysis. Conclusions: Our results suggested that psoriasis vulgaris causally increases the risk of BP, highlighting the need for potential strategies for the prevention and early diagnosis of comorbid BP in patients with psoriasis vulgaris. Further researches into this association and underlying mechanisms are warranted.
Assuntos
Penfigoide Bolhoso , Psoríase , Estilbenos , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Penfigoide Bolhoso/genética , Psoríase/genética , NonoxinolRESUMO
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Assuntos
Cartilagem Articular , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Humanos , Engenharia Tecidual/métodos , Cartilagem Articular/fisiologia , Cartilagem Articular/citologia , Alicerces Teciduais/química , Regeneração/fisiologia , Animais , Células-Tronco Mesenquimais/citologia , Condrogênese/fisiologia , Materiais BiocompatíveisRESUMO
Aerogels have attracted considerable attention in sample pretreatment for their outstanding properties, such as the unique porous structure, large surface area and abundant modifiable active sites. The present research reports a three-dimensional interconnected porous network aerogel (PEI-AGO) manufactured based on graphene oxide (GO), polyethyleneimine (PEI) and agar as basic materials through a vacuum freeze-drying treatment. The PEI-AGO aerogel exhibits great potential as a solid phase extraction adsorbent for the selective purification of six endogenous plant hormones in conjunction with high performance liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS). Several factors affecting the extraction efficiency were investigated. Under the optimized extraction conditions, a wide linear range of 0.5-100 ng mL-1 with a good linearity (r > 0.9934) was observed. Low limits of detection (LODs) and limits of quantification (LOQs) were obtained in the range of 0.032-0.155 ng mL-1 and 0.107-0.518 ng mL-1, respectively. Furthermore, the relative recoveries for spiked ginseng samples exhibited remarkable consistency, ranging from 90.2% to 117.6%, with a relative standard deviation (RSD) of ≤9.4% (n = 3). In summary, PEI-AGO has proven to be an effective adsorbent for the pretreatment and enrichment of phytohormones which can be used for the determination of trace endogenous acidic plant hormones in ginseng leaves.
Assuntos
Panax , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/química , Polietilenoimina/análise , Polietilenoimina/química , Cromatografia Líquida de Alta Pressão/métodosRESUMO
BACKGROUND: This study aimed to observe the clinical effects of Xiao-xian decoction combined with acupoint application therapy (AAT) for treating pediatric adenoid hypertrophy (AH). METHODS: We randomly divided 93 AH children into 3 groups: AAT alone; Xiao-xian decoction + AAT; control: Montelukast oral therapy. All participants were treated for a month. We used the traditional Chinese medicine syndrome score to evaluate the clinical efficacy and the obstructive sleep apnea-18 scale to evaluate the quality of life. RESULTS: The major symptoms (nasal congestion, open mouth breathing, snoring, and tongue image) and secondary symptoms of patients treated with Xiao-xian decoction + AAT significantly improved compared to before treatment. The pairwise comparison between groups showed that snoring, tongue, secondary symptoms, and total effective rate of the combined treatment group were better than the control and AAT alone. Additionally, the open-mouth breathing, quality of life, and recurrence rate did not differ after treatment. CONCLUSION: Oral Xiao-xian decoction combined with AAT significantly improved the symptoms and signs of nasal congestion, open-mouth breathing, snoring, tongue, and quality of life of AH children and may be used as a long-term treatment for AH.
Assuntos
Tonsila Faríngea , Doenças Nasais , Criança , Humanos , Ronco , Qualidade de Vida , Respiração Bucal/complicações , Pontos de Acupuntura , Hipertrofia , Doenças Nasais/complicaçõesRESUMO
Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.
Assuntos
Células-Tronco Mesenquimais , Comunicação Parácrina , Ratos , Animais , Proteômica , Diferenciação Celular , Materiais BiocompatíveisRESUMO
The combination of chemometrics and electrochemical sensors modified with molecularly imprinted polymers (MIPs) towards the development of MIP-based electronic tongues (ETs) was explored herein. To demonstrate the potential of such an approach, the simultaneous determination of paracetamol, ascorbic acid and uric acid mixtures in pharmaceutical samples was evaluated. To this aim, MIP-based sensors for the different compounds were prepared by in situ electropolymerization of pyrrole in the presence of p-toluenesulfonate anion (pTS-), which acted as functional doping ion of the polypyrrole (PPy) MIP backbone. Morphological characterization of the MIPs was done by scanning electron microscopy (SEM), while functionalization of the electrodes was monitored electrochemically. Under the optimized measuring conditions, the developed sensors showed a good performance, with good linearity at the µM level (R2 > 0.992, limits of detection between 1 and 24 µM) as well as good repeatability (intra- and inter-day RSD values between 3 and 6% over 30 consecutive measurements). Finally, the quantification of the individual substances in different pharmaceutical samples was achieved by an artificial neural networks (ANNs) model, showing satisfactory agreement between expected and obtained values (R2 > 0.987).
Assuntos
Técnicas Biossensoriais , Impressão Molecular , Preparações Farmacêuticas , Quimiometria , Técnicas Eletroquímicas , Eletrodos , Nariz Eletrônico , Polímeros Molecularmente Impressos , Polímeros , PirróisRESUMO
Fluoroquinolones (FQs) are one of the most important types of antibiotics in the clinical, poultry, and aquaculture industries, and their monitoring is required as the abuse has led to severe issues, such as antibiotic residues and antimicrobial resistance. In this study, we report a voltammetric electronic tongue (ET) for the simultaneous determination of ciprofloxacin, levofloxacin, and moxifloxacin in both pharmaceutical and biological samples. The ET comprises four sensors modified with three different customized molecularly imprinted polymers (MIPs) and a nonimprinted polymer integrated with Au nanoparticle-decorated multiwall carbon nanotubes (Au-fMWCNTs). MWCNTs were first functionalized to serve as a supporting substrate, while the anchored Au nanoparticles acted as a catalyst. Subsequently, MIP films were obtained by electropolymerization of pyrrole in the presence of the different target FQs. The sensors' morphology was characterized by scanning electron microscopy and transmission electron microscopy, while the modification process was followed electrochemically step by step employing [Fe(CN)6]3-/4- as the redox probe. Under the optimal conditions, the MIP(FQs)@Au-fMWCNT sensors exhibited different responses, limits of detection of ca. 1 µM, and a wide detection range up to 300 µM for the three FQs. Lastly, the developed ET presents satisfactory agreement between the expected and obtained values when used for the simultaneous determination of mixtures of the three FQs (R2 ≥0.960, testing subset), which was also applied to the analysis of FQs in commercial pharmaceuticals and spiked human urine samples.
Assuntos
Nanopartículas Metálicas , Impressão Molecular , Nanotubos de Carbono , Humanos , Polímeros Molecularmente Impressos , Ouro , Nanotubos de Carbono/química , Fluoroquinolonas/análise , Fluoroquinolonas/química , Antibacterianos/análise , Aprendizado de MáquinaRESUMO
PURPOSE: Osseointegration at the titanium surface-bone interface is one of the key factors affecting the success rate of dental implants. However, the titanium surface always forms a passive oxide layer and impacts bone marrow-derived mesenchymal stem cell (BMSC) osteogenic differentiation after exposure to the atmosphere, which further leads to poor osseointegration. Given that wet storage helps prevent titanium aging and that weakly alkaline conditions stimulate BMSC osteogenic differentiation, the aim of the present study was to explore whether sodium bicarbonate, a well-known hydrogen ion (pH) buffer, forms an alkaline microenvironment on titanium surfaces to promote BMSC osteogenic differentiation. MATERIAL AND METHODS: In this work, sand-blasted and acid-etched (SLA) titanium discs were soaked in 20 mM, 50 mM, 100 mM, and 200 mM sodium bicarbonate at room temperature for 5 min without rinsing. The influence of this surface modification on BMSC adhesion, proliferation, and osteogenic differentiation was measured. Additionally, cellular osteogenic differentiation-associated signaling pathways were evaluated. RESULTS: We showed that titanium discs treated with sodium bicarbonate created an extracellular environment with a higher pH for BMSCs than the normal physiological value for 5 days, strongly promoting BMSC osteogenic differentiation via the activation of integrin-focal adhesion kinase-alkaline phosphatase (Itg-FAK-ALP). In addition, the proliferation and adhesion of BMSCs were increased after alkaline treatment. These cellular effects were most significant with 100 mM sodium bicarbonate. CONCLUSION: The results indicated that the titanium surface treated with sodium bicarbonate improved BMSC osteogenic differentiation mainly by creating an alkaline microenvironment, which further activated the Itg-FAK-ALP signaling pathway. CLINICAL RELEVANCE: Surfaces modified with 100 mM sodium bicarbonate had the highest initial pH value and thus showed the greatest potential to improve BMSC performance on titanium surfaces, identifying a novel conservation method for dental implants.
Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fosfatase Alcalina , Humanos , Propriedades de Superfície , Titânio/farmacologiaRESUMO
P-glycoprotein (P-gp) mediated drug efflux has been recognized as a key factor contributing to the multidrug resistance (MDR) in tumor cells. To address this issue, a new pH-sensitive mixed copolymer micelles system composed of hyaluronic acid-g-poly(l-histidine) (HA-PHis) and d-α-tocopheryl polyethylene glycol 2000 (TPGS2k) copolymers was developed to co-deliver doxorubicin (DOX) and TPGS2k into drug-resistant breast cancer MCF-7 cells (MCF-7/ADR). The DOX-loaded HA-PHis/TPGS2k mixed micelles (HPHM/TPGS2k) were characterized to have a unimodal size distribution, high DOX loading content and a pH dependent drug release profile due to the protonation of poly(l-histidine). As compared to HA-PHis micelles (HPHM), the HPHM/TPGS2k showed higher and comparable cytotoxicity against MCF-7/ADR cells and MCF-7 cells, respectively. The enhanced MDR reversal effect was attributed to the higher amount of cellular uptake of HPHM/TPGS2k in MCF-7/ADR cells than HPHM, arising from the inhibition of P-gp mediated drug efflux by TPGS2k. The measurements of P-gp expression level and mitochondrial membrane potential indicate that the blank HPHM/TPGS2k inhibited P-gp activity by reducing mitochondrial membrane potential and depletion of ATP but without inhibition of P-gp expression. In vivo study of micelles in tumor-bearing mice indicate that HPHM/TPGS2k could reach the tumor site more effectively than HPHM. The pH-sensitive mixed micelles system has been demonstrated to be a promising approach for overcoming the MDR.
Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Preparações de Ação Retardada/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Histidina/química , Histidina/farmacologia , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Vitamina E/análogos & derivados , Vitamina E/química , Vitamina E/farmacologiaRESUMO
In this study, pH-sensitive biomaterials coated polymer/DNA nanocomplexes containing a high mobility group box 1 (HMGB1) were developed as an efficient non-viral gene delivery system. HMGB1 is a family of endogenous molecules that contains nuclear locating sequences (NSL). Polyethylene glycol tethered carboxylated chitosan modified with folic acid (FA-PEG-CCTS) was synthesized and its buffering capacity was determined by acid-base titration. A pH-sensitive core-shell system FA-PEG-CCTS/PAMAM/HMGB1/pDNA nanocomplexes (FPCPHDs), was prepared and characterized. Electrophoresis showed that FPCPHDs were resistant to heparin replacement and DNase I digestion. FPCPHDs exhibited only minor toxic effects on HepG2 and KB cells. The results of both luciferase activity assay and RFP fluorescence intensity analysis showed that FPCPHDs enhanced gene transfection and expression in KB cells. Moreover, gene transfection and expression in KB cells were inhibited by free folic acid. Intracellular trafficking of FPCPHDs in KB cells showed that FPCPHDs could rapidly escape from endo-lysosomes and become exclusively located in the nucleus at 3 h post transfection. In addition, FPCPHDs exhibited increased red fluorescence protein (RFP) expression at the tumor site of S180 xenograft nude mice. All results suggest that FPCPHDs is an efficient approach to improve the transfection and expression efficiency in most FR-positive cancer cells.