Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 253, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755600

RESUMO

Improving cancer therapy by targeting the adverse tumor microenvironment (TME) rather than the cancer cells presents a novel and potentially effective strategy. In this study, we introduced FexMoyS nanoparticles (NPs), which act as sequential bioreactors to manipulate the TME. FexMoyS NPs were synthesized using thermal decomposition and modified with polyethylene glycol (PEG). Their morphology, chemical composition, and photothermal properties were characterized. The capability to produce ROS and deplete GSH was evaluated. Effects on CRC cells, including cell viability, apoptosis, and glycolysis, were tested through various in vitro assays. In vivo efficacy was determined using CRC-bearing mouse models and patient-derived xenograft (PDX) models. The impact on the MAPK signaling pathway and tumor metabolism was also examined. The FexMoyS NPs showed efficient catalytic activity, leading to increased ROS production and GSH depletion, inducing ferroptosis, and suppressing glycolysis in CRC cells. In vivo, the NPs significantly inhibited tumor growth, particularly when combined with NIR light therapy, indicating a synergistic effect of photothermal therapy and chemodynamic therapy. Biosafety assessments revealed no significant toxicity in treated mice. RNA sequencing suggested that the NPs impact metabolism and potentially immune processes within CRC cells. FexMoyS NPs present a promising multifaceted approach for CRC treatment, effectively targeting tumor cells while maintaining biosafety. The nanoparticles exhibit potential for clinical translation, offering a new avenue for cancer therapy.


Assuntos
Neoplasias Colorretais , Ferroptose , Glicólise , Polietilenoglicóis , Espécies Reativas de Oxigênio , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Humanos , Camundongos , Polietilenoglicóis/química , Ferroptose/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Camundongos Nus , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glutationa/metabolismo
2.
J Oral Pathol Med ; 52(9): 867-876, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552752

RESUMO

BACKGROUND: Odontogenic keratocysts (OKCs) are odontogenic jaw lesions that cause destruction and dysfunction of the jawbone. OKCs can be sporadic or associated with nevoid basic cell carcinoma syndrome (NBCCS). However, the factors that initiate OKCs and the mechanism of cyst formation remain unclear. Here, we investigated the impact of PTCH1 and SMO mutations on disease progression, as well as the effects of sonic hedgehog (SHH) signaling pathway inhibitors GDC-0449 and GANT61 on OKC fibroblasts. METHODS: Eight sporadic OKC fibroblasts without gene mutations were used as the control, and six NBCCS-related fibroblasts were cultured in vitro. The effect of PTCH1 non-truncated mutation 3499G>A (p.G1167R) and SMO c.2081C>G (p.P694R) mutation on OKC fibroblast proliferation was examined by EdU assay. CCK8 and wound-healing assays detected the effects of OKC fibroblasts carrying PTCH1 c.3499G>A (p.G1167R) and SMO c.2081C>G (p.P694R) mutations on the proliferation and migration of HaCaT cells after co-culture. Quantitative real-time PCR detected the effects of GDC-0449 or GANT61 on the SHH signaling pathway in NBCCS-related OKCs with PTCH1 truncated mutations and PTCH1 c.3499G>A (p.G1167R) and/or SMO c.2081C>G (p.P694R) mutations. RESULTS: PTCH1 c.3499G>A (p.G1167R) and SMO c.2081C>G (p.P694R) promoted the proliferation of OKC fibroblasts. The proliferation and migration of HaCaT cells were affected by NBCCS-related OKC fibroblasts carrying PTCH1 c.3499G>A (p.G1167R) and SMO c.2081C>G (p.P694R) mutations. GDC-0449 significantly inhibited the SHH signaling pathway in NBCCS-related OKC fibroblasts with PTCH1 truncated mutations. An NBCCS-related OKC carrying PTCH1 c.3499G>A (p.G1167R) and SMO c.2081C>G (p.P694R) mutations were resistant to GDC-0449 but inhibited by GANT61. CONCLUSIONS: Genetic mutations in OKC fibroblasts may affect the biological behavior of epithelial and stromal cells and cause disease. GDC-0449 could be used to treat OKCs, especially NBCCS-related OKCs with PTCH1 truncated mutations. SMO c.2081C>G (p.P694R) may lead to resistance to GDC-0449; however, GANT61 may be used as an alternative inhibitor.

3.
Langmuir ; 38(18): 5633-5644, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35475615

RESUMO

There is an increasing need to reduce the silver content in silver-based inks or pastes and achieve low-temperature sintering for scalable and low-cost production of printed wearable electronics. This need depends on the ability to control the metal composition and the surface properties of the nanoinks. Alloying silver with copper provides a pathway for meeting the need in terms of cost reduction, but little is known about the composition controllability and the low-temperature sintering capability. We report herein a scalable wet chemical synthesis of bimetallic silver-copper alloy nanoinks with room temperature sintering properties. The bimetallic alloy nanoparticles with a controllable composition can be formulated as stable nanoinks. The nanoinks printed on paper substrates are shown to sinter under room temperature. In addition to composition dependence, the results reveal an intriguing dependence of sintering on humidity above the printed nanoink films. These findings are assessed based on theoretical simulation of the sintering processes via surface-mediated sintering and interparticle necking mechanisms in terms of nanoscale adsorption, adhesion and diffusion, and surface free energies. Implications of the findings for room temperature fabrication of wearable sensors are also discussed.


Assuntos
Nanopartículas Metálicas , Prata , Ligas , Cobre/química , Nanopartículas Metálicas/química , Prata/química , Temperatura
4.
Environ Res ; 215(Pt 2): 114376, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165857

RESUMO

Traditional corrosion inhibitors make great contribution to metal protection, but also cause environmental pollution. To solve the problem, plant extracts as green corrosion inhibitors have attracted much attention in recent years. Plants are good raw materials for corrosion inhibitors and also meet the requirements of industry. However, they have not been successfully applied in industry due to the unknown composition of the effective corrosion inhibitors and large dosage thereof. Therefore, cinchonain IIa was separated from Uncaria laevigata with abundant sources and low cost from nature in this work. Here we hypothesized that cinchonain IIa could show good corrosion inhibition performance for Q235 steel in the acidic medium. Through experiments and theoretical calculation, we studied the corrosion inhibition effect of cinchonain IIa on Q235 in 1 M HCl solution at 298 K for 48 h. Electrochemical experiments revealed that the inhibition efficiency of 200 mg/L cinchonain IIa in 1 M HCl for Q235 steel was 94.08% for 48 h. It even showed over 93% corrosion inhibition efficiency and durable protection performance to 28 d. Surface observations indicated that cinchonain IIa were firmly attached to the steel surface by forming a protective film. Moreover, quantum chemical calculation and molecular dynamics simulation revealed the inhibition mechanism at molecular and atomic level. Compared with some plant extracts, here we demonstrate that the outstanding advantages of cinchonain IIa include sustained protective effect, small dosage, and low toxicity. Accordingly, it may be used as a green industrial corrosion inhibitor with great potential in oilfield acidification and acid pickling.


Assuntos
Cáusticos , Uncaria , Corrosão , Extratos Vegetais , Aço/química
5.
Ecotoxicol Environ Saf ; 208: 111664, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396174

RESUMO

Recently, the pollution of microplastics (MPs) in the global freshwater environment has become increasingly problematic, but there are few studies on the freshwater environment risks of MPs. The present study, therefore, has investigated the single and combined effects of MPs and lead (Pb) on the freshwater algal Microcystis aeruginosa. Results showed that Pb-only (>0.05 mg·L-1) promoted the growth of algal cells, while MPs-only (1 mg L-1) resulted in growth inhibition. However, compared with the corresponding concentration of Pb-only groups, the growth of algal cells was promoted in MPs + Pb treatments. MPs-only and Pb-only (0.5 mg L-1) both reduced the content of photosynthetic pigments and affected algal photosynthesis. The MPs-only treatment and MPs + Pb2+ (no pretreatment, 0.5 mg L-1 Pb2+) treatments showed significant cell aggregation. At the same time, MPs-only caused a significant increase in bound extracellular polysaccharides (bEPS), while 0.5 mg L-1 Pb reduced bEPS. Furthermore, under high Pb stress (0.5 mg L-1), the effects of combined MPs and Pb on chlorophyll content, antioxidant enzyme activity (peroxidase (POD), catalase (CAT)), and damage to algal cells were less compared to individual effects, and the combination of MPs and Pb had a synergistic effect on promoting aggregations of M. aeruginosa. These results demonstrate that single and combined effects of MPs and Pb can induce differential responses in the freshwater algal M. aeruginosa, which can have a significant impact on aquatic ecosystems.


Assuntos
Água Doce/microbiologia , Chumbo/toxicidade , Microcystis/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Clorofila/metabolismo , Sinergismo Farmacológico , Ecossistema , Água Doce/química , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Fotossíntese/efeitos dos fármacos
6.
Pharm Res ; 37(6): 113, 2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32476051

RESUMO

PURPOSE: To study the impact of different surfactants on the supersaturation of nifedipine stabilized with HPMC and PVP-VA. METHODS: Different kinds of surfactants, including one cationic surfactant, two anionic surfactants, and three nonionic surfactants, were used to evaluate their impacts on the supersaturation of nifedipine stabilized with HPMC and PVP-VA. Polymer-surfactant interaction was studied by nuclear magnetic resonance (NMR) and fluorescent method. Solubility of nifedipine in solutions containing different amounts of polymers and surfactants was measured. Drug-polymer affinity was evaluated by measuring the percentage of polymer coprecipitated together with the drug from supersaturated solutions. RESULTS: Different polymer-surfactant combinations had different impacts on the supersaturation of nifedipine. Some combinations, such as PVP-VA/SLS and PVP-VA/NaTC under higher surfactant concentrations, showed improved drug supersaturation, due to increased drug solubility or polymer-surfactant synergy; while other combinations, such as HPMC/SLS and HPMC/Tween 20 under lower surfactant concentrations, showed reduced drug supersaturation, which could result from competitive surfactant-polymer or drug-surfactant interaction that disrupted pre-existent drug-polymer interaction. CONCLUSIONS: The ultimate impacts of various surfactants on polymer stabilized nifedipine supersaturation could be attributed to the interplay between different factors, including solubility enhancement of the drug, drug-polymer-surfactant interactions, and polymer-surfactant synergy.


Assuntos
Composição de Medicamentos/métodos , Nifedipino/química , Tensoativos/química , Química Farmacêutica , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Derivados da Hipromelose , Espectroscopia de Ressonância Magnética , Pirrolidinas/química , Solubilidade , Compostos de Vinila/química
7.
Mol Pharm ; 16(1): 205-213, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30452278

RESUMO

We investigated the drug-polymer interactions in nonaqueous and aqueous environments between a poorly water-soluble drug, BAY1161909 (909), and two commonly used polymers in amorphous solid dispersions, i.e., PVP and HPMC-AS. In an nonaqueous state, with a drug-polymer Flory-Huggins interaction parameter, solution NMR and FT-IR results revealed that strong specific interactions existed between 909 and PVP, while not between 909 and HPMC-AS. After prolonged moisture exposure under 95% RH, 909/PVP intermolecular interaction no longer existed, while hydrophobic interaction between 909 and HPMC-AS occurred and persisted. In an aqueous supersaturation study of 909, codissolved PVP significantly outperformed predissolved PVP in maintaining 909 supersaturation. We hypothesized that the codissolved PVP formed a specific interaction with 909, and thus, it was able to prolong 909 supersaturation before disruption of the interaction in aqueous medium, while predissolved PVP formed hydrogen bonds with water, and thus, it was no longer able to form specific interactions with 909 to prolong its supersaturation. In contrast, HPMC-AS effectively mediated 909 supersaturation through hydrophobic interaction, which became pronounced in an aqueous environment and was independent of how HPMC-AS was added. This hypothesis was supported by dynamic light scattering analysis, wherein the formation of nanosized drug/polymer aggregations was found to be correlating with the supersaturation of 909. In summary, we concluded that polymer-mediated drug supersaturation was controlled by drug-polymer interactions persisting in an aqueous environment. Therefore, the physical nature of the drug-polymer interaction as well as the dissolution kinetic of the drug and polymer are all critically important to achieve an optimal ASD formulation design.


Assuntos
Polímeros/química , Varredura Diferencial de Calorimetria , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água
8.
Mol Pharm ; 16(1): 318-326, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30511872

RESUMO

We aim to understand the potential impact of a modest chemical modification of a drug molecule on the downstream design of its amorphous solid dispersion (ASD) formulation. To this end, we used sorafenib (SOR) and its fluorinated form, regorafenib (REG), as model drugs, to assess the impact of a single hydrogen substitution by fluorine on the molecular interaction and miscibility between drug and PVP or PVP-VA, two commonly used polymers for ASDs. In this study, we observed that the Tg values of PVP or PVP-VA based ASDs of SOR deviated positively from the Gordon-Taylor prediction, which assumes ideal mixing, yet the Tg of REG ASDs deviated negatively from or matched well with the ideal mixing model, suggesting much stronger drug-polymer interactions in SOR ASDs compared with the REG ASDs. Using solution NMR and computational methods, we proved that a six-member-ring formed between the carbonyl groups on the polymers and the uramido hydrogen of SOR or REG, through intermolecular hydrogen bonding. However, steric hindrance resulting from fluorination in REG caused weaker interaction between REG-polymer than SOR-polymer. To further confirm this mechanism, we investigated the molecular interactions of other two uramido-containing model compounds, triclocarban (TCC) and gliclazide (GCZ), with PVP. We found that TCC but not GCZ formed a hexatomic ring with PVP. We concluded that PVP based polymers can easily interact with N, N'-disubstituted urea compounds with a trans-trans structure in the form of hexatomic rings, and the interaction strength of the hexatomic ring largely depended on the chemistry of drug molecules. This study illustrated that even a slight chemical modification on drug molecules could result in substantial difference in drug-polymer interactions, thus significantly impacting polymer selection and pharmaceutical performance of their ASD formulations.


Assuntos
Flúor/química , Polímeros/química , Sorafenibe/química , Carbanilidas/química , Gliclazida/química , Hidrogênio , Compostos de Fenilureia/química , Povidona/química , Piridinas/química
9.
Pharm Res ; 36(7): 105, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31102031

RESUMO

PURPOSE: To reveal the underlying mechanism inducing the opposite trends of surface composition enrichment of spray dried amorphous solid dispersions (ASD) of sorafenib and regorafenib, two compounds only differ in hydrogen to fluorine substitution. METHODS: Sorafenib/PVP and regorafenib/PVP ASDs were prepared by spray drying. Morphology of ASDs was visually inspected and examined by SEM. The surface compositions of ASDs were analyzed by XPS. Glass transition temperature (Tg) of ASDs was determined by DSC. Water vapor sorption isotherms of ASDs were studied by moisture sorption analyzer. Molecular interaction between the drug and the polymer was analyzed by solution NMR. RESULTS: In 10% and 20% drug loading sorafenib/PVP ASDs, short time moisture exposure induced PVP enrichment on the surface, and the appearance of initial ASDs powder became gel-like after water uptake. While in 30% sorafenib/PVP and any regorafenib/PVP ASDs regardless of drug loading, moisture exposure induced surface drug enrichment, while their powder-like appearance and average particle size remained unchanged. Meanwhile, sorafenib/PVP had similar water vapor sorption isotherms as regorafenib/PVP, before and after moisture induced phase separation. NMR study demonstrated a hex atomic ring H-bonding interaction between the drug and PVP, with a 1:1 drug: monomer stoichiometry molar ratio, which persisted in sorafenib/PVP but not regorafenib/PVP system under 95%RH moisture. CONCLUSIONS: Moisture exposure could lead to drug or polymer enrichment on the surface of ASDs, while the viability of drug-polymer interaction persisting in water environment contributed to such surface composition enrichment.


Assuntos
Flúor/química , Hidrogênio/química , Sorafenibe/química , Umidade , Transição de Fase , Compostos de Fenilureia/química , Polímeros/química , Povidona/química , Piridinas/química , Solubilidade , Vapor , Propriedades de Superfície
10.
Mol Pharm ; 15(7): 2754-2763, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29782805

RESUMO

Amorphous solid dispersion (ASD) is one of the most versatile supersaturating drug delivery systems to improve the dissolution rate and oral bioavailability of poorly water-soluble drugs. PVP based ASD formulation of nimodipine (NMD) has been marketed and effectively used in clinic for nearly 30 years, yet the mechanism by which PVP maintains the supersaturation and subsequently improves the bioavailability of NMD was rarely investigated. In this research, we first studied the molecular interactions between NMD and PVP by solution NMR, using CDCl3 as the solvent, and the drug-polymer Flory-Huggins interaction parameter. No strong specific interaction between PVP and NMD was detected in the nonaqueous state. However, we observed that aqueous supersaturation of NMD could be significantly maintained by PVP, presumably due to the hydrophobic interactions between the hydrophobic moieties of PVP and NMD in aqueous medium. This hypothesis was supported by dynamic light scattering (DLS) and supersaturation experiments in the presence of different surfactants. DLS revealed the formation of NMD/PVP aggregates when NMD was supersaturated, suggesting the formation of hydrophobic interactions between the drug and polymer. The addition of surfactants, sodium lauryl sulfate (SLS) or sodium taurocholate (NaTC), into PVP maintained that NMD supersaturation demonstrated different effects: SLS could only improve NMD supersaturation with concentration above its critical aggregation concentration (CAC) value while not with lower concentration. Nevertheless, NaTC could prolong NMD supersaturation independent of concentration, with lower concentration outperformed higher concentration. We attribute these observations to PVP-surfactant interactions and the formation of PVP/surfactant complexes. In summary, despite the lack of specific interactions in the nonaqueous state, NMD aqueous supersaturation in the presence of PVP was attained by hydrophobic interactions between the hydrophobic moieties of NMD and PVP. This hydrophobic interaction could be disrupted by surfactants, which interact with PVP competitively, thus hindering the capability of PVP to maintain NMD supersaturation. Therefore, caution is needed when evaluating such ASDs in vitro and in vivo when various surfactants are present either in the formulation or in the surrounding medium.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Nimodipina/química , Tensoativos/química , Disponibilidade Biológica , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Nimodipina/administração & dosagem , Nimodipina/farmacocinética , Polivinil/química , Pirrolidinas/química , Dodecilsulfato de Sódio/química , Solubilidade , Ácido Taurocólico/química
11.
Nanomedicine ; 14(2): 547-555, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29253637

RESUMO

PEGylated gadolinium oxide nanoparticles (PEG-Gd2O3 NPs) as MRI nano-contrast agents (nano-CAs) displayed high relaxivity in our previous study. However, their behaviors in vivo have not been studied systematically yet. Herein, with clinically used CA, Magnevist as control, their toxicity, pharmacokinetics, biodistribution, half-life and excretion in vivo were studied. Mouse experiments after PEG-Gd2O3 NP administration, including the analysis of general appearance, histological changes, hepatic and renal functions, were performed to evaluate their toxicity in vivo. MRI and inductively coupled plasma-mass spectrometry (ICP-MS) quantification of Gd accumulation in different organs were introduced to investigate their biodistribution and excretion. The results showed that compared with Magnevist, PEG-Gd2O3 NPs presented longer half-life, similar acute toxicity and histological influence, less effect on hepatic and renal functions, and stronger contrast enhancement in tumor, showing their potentials as MRI CA for preclinical applications. Different from kidney clearance of Magnevist, PEG-Gd2O3 NPs were mainly excreted via liver.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/metabolismo , Polietilenoglicóis/química , Animais , Feminino , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Distribuição Tecidual
12.
Proc Natl Acad Sci U S A ; 111(11): 4251-6, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591637

RESUMO

The transcription factor E-twenty-six related gene (ERG), which is overexpressed through gene fusion with the androgen-responsive gene transmembrane protease, serine 2 (TMPRSS2) in ∼40% of prostate tumors, is a key driver of prostate carcinogenesis. Ablation of ERG would disrupt a key oncogenic transcriptional circuit and could be a promising therapeutic strategy for prostate cancer treatment. Here, we show that ubiquitin-specific peptidase 9, X-linked (USP9X), a deubiquitinase enzyme, binds ERG in VCaP prostate cancer cells expressing TMPRSS2-ERG and deubiquitinates ERG in vitro. USP9X knockdown resulted in increased levels of ubiquitinated ERG and was coupled with depletion of ERG. Treatment with the USP9X inhibitor WP1130 resulted in ERG degradation both in vivo and in vitro, impaired the expression of genes enriched in ERG and prostate cancer relevant gene signatures in microarray analyses, and inhibited growth of ERG-positive tumors in three mouse xenograft models. Thus, we identified USP9X as a potential therapeutic target in prostate cancer cells and established WP1130 as a lead compound for the development of ERG-depleting drugs.


Assuntos
Endopeptidases/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias da Próstata/enzimologia , Inibidores de Proteases/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Cianoacrilatos , Células HeLa , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Piridinas/farmacologia , Interferência de RNA , Fatores de Transcrição , Regulador Transcricional ERG , Ubiquitina Tiolesterase , Ubiquitinação/efeitos dos fármacos
13.
Anal Chem ; 88(15): 7457-61, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27434697

RESUMO

As medical and recreational use of cannabis, or marijuana, becomes more prevalent, law enforcement needs a tool to evaluate whether drivers are operating vehicles under the influence of cannabis, specifically the psychoactive substance, tetrahydrocannabinol (THC). However, the cutoff concentration of THC that causes impairment is still controversial, and current on-site screening tools are not sensitive enough to detect trace amounts of THC in oral fluids. Here we present a novel sensing platform that employs giant magnetoresistive (GMR) biosensors integrated with a portable reader system and smartphone to detect THC in saliva using competitive assays. With a simple saliva collection scheme, we have optimized the assay to measure THC in the range from 0 to 50 ng/mL, covering most cutoff values proposed in previous studies. This work facilitates on-site screening for THC and shows potential for testing of other small molecule drugs and analytes in point-of-care (POC) settings.


Assuntos
Dronabinol/análise , Abuso de Maconha/diagnóstico , Saliva/química , Detecção do Abuso de Substâncias/métodos , Animais , Anticorpos/imunologia , Técnicas Biossensoriais/métodos , Bovinos , Dronabinol/imunologia , Humanos , Imunoensaio/métodos , Fenômenos Magnéticos , Nanopartículas/química , Soroalbumina Bovina , Smartphone
14.
Mol Pharm ; 13(8): 2787-95, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27337060

RESUMO

Sodium lauryl sulfate (SLS), as an effective surfactant, is often used as a solubilizer and/or wetting agent in various dosage forms for the purpose of improving the solubility and dissolution of lipophilic, poorly water-soluble drugs. This study aims to understand the impact of SLS on the solution behavior and bioavailability of hypromellose acetate succinate (HPMC-AS)-based posaconazole (PSZ) ASDs, and to identify the underlying mechanisms governing the optimal oral bioavailability of ASDs when surfactants such as SLS are used in combination. Fluorescence spectroscopy and optical microscopy showed that "oil-out" or "liquid-liquid phase separation (LLPS)" occurred in the supersaturated PSZ solution once drug concentration surpassed ∼12 µg/mL, which caused the formation of drug-rich oily droplets with initial size of ∼300-400 nm. Although FT-IR study demonstrated the existence of specific interactions between PSZ and HPMC-AS in the solid state, predissolved HPMC-AS was unable to delay LLPS of the supersaturated PSZ solution and PSZ-rich amorphous precipitates with ∼16-18% HPMC-AS were formed within 10 min. The coprecipitated HPMC-AS was found to be able to significantly delay the crystallization of PSZ in the PSZ-rich amorphous phase from less than 10 min to more than 4 h, yet coexistent SLS was able to negate this crystallization inhibition effect of HPMC-AS in the PSZ-rich amorphous precipitates and cause fast PSZ crystallization within 30 min. 2D-NOESY and the CMC/CAC results demonstrated that SLS could assemble around HPMC-AS and competitively interact with HPMC-AS in the solution, thus prevent HPMC-AS from acting as an effective crystallization inhibitor. In a crossover dog PK study, this finding was found to be correlating well with the in vivo bioavailability of PSZ ASDs formulated with or without SLS. The SLS containing PSZ ASD formulation demonstrated an in vivo bioavailability ∼30% of that without SLS, despite the apparently better in vitro dissolution, which only compared the dissolved drug in solution, a small fraction of the total PSZ dose. We conclude that the bioavailability of ASDs is highly dependent on the molecular interactions between drug, surfactant, and polymer, not only in the solution phase but also in the drug-rich "oily" phase caused by supersaturation.


Assuntos
Derivados da Hipromelose/química , Dodecilsulfato de Sódio/química , Triazóis/química , Liberação Controlada de Fármacos , Espectroscopia de Ressonância Magnética , Soluções Farmacêuticas/química , Solubilidade , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Pharm Res ; 33(10): 2445-58, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283830

RESUMO

PURPOSE: To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). METHODS: Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. RESULTS: In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems); while drug released much slower than the polymer when molecular level mixing or drug-polymer interaction was absent (SDD-PB systems). For ASDs without drug-polymer interaction (i.e., KTZ/HPMC systems), the mixing homogeneity had little impact on the release rate of either the drug or the polymer thus SDD and SDD-PB demonstrated the same drug or polymer release rate, while the drug released slowly and independently of polymer release. CONCLUSIONS: The initial drug release from an ASD was controlled by 1) the polymer release rate; 2) the strength of drug-polymer interaction, including the intrinsic interaction caused by the chemistry of the drug and the polymer (measured by the χ value), as well as that the apparent interaction caused by the drug-polymer ratio (measure by the extent of peak shift on spectroscopic analysis); and 3) the level of mixing homogeneity between the drug and polymer. In summary, the selection of polymer, drug-polymer ratio, and ASD processing conditions have profound impacts on the dissolution behavior of ASDs. Graphical Abstract Relationship between initial drug and polymer dissolution rates from amorphous solid dispersions with different mixing uniformity and drug-polymer interactions.


Assuntos
Liberação Controlada de Fármacos , Preparações Farmacêuticas/metabolismo , Polímeros/metabolismo , Interações Medicamentosas/fisiologia , Liberação Controlada de Fármacos/fisiologia , Preparações Farmacêuticas/química , Polímeros/química , Solubilidade , Difração de Raios X/métodos
16.
Sensors (Basel) ; 16(1)2016 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26729134

RESUMO

A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Pressão , Materiais Biomiméticos , Desenho de Equipamento , Humanos , Teste de Materiais , Polímeros/química , Silício/química , Pele Artificial
17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 33(3): 442-7, 2016 Jun.
Artigo em Zh | MEDLINE | ID: mdl-29709141

RESUMO

Polyvinyl alcohol(PVA)hydrogel was made for simulating human's soft tissue in our experiment.The image acquisition device is composed of an optical platform,a camera and its bracket and a light source.In order to study the law of soft tissue deformation under flexible needle insertion,markers were embedded into the soft tissue and their displacements were recorded.Based on the analysis of displacements of markers in Xdirection and Ydirection,back propagation(BP)neural network was employed to model the displacement of Ydirection for the markers.Compared to the experimental data,fitting degree of the neural network model was above 95%,the maximum relative error for valid data was limited to 30%,and the maximum absolute error was 0.8mm.The BP neural network model was beneficial for predicting soft tissue deformation quantitatively.The results showed that the model could effectively improve the accuracy of flexible needle insertion into soft tissue.


Assuntos
Modelos Anatômicos , Agulhas , Redes Neurais de Computação , Simulação por Computador , Humanos , Hidrogéis , Álcool de Polivinil
18.
Hepatobiliary Pancreat Dis Int ; 14(3): 293-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26063031

RESUMO

BACKGROUND: The resection and reconstruction of large vessels, including the portal vein, are frequently needed in tumor resection. Warm ischemia before reconstruction might have deleterious effects on the function of some vital organs and therefore, how to reconstruct the vessels quickly after resection is extremely important. The present study was to introduce a new type of magnetic compression anastomosis (MCA) device to establish a quick non-suture anastomosis of the portal vein after resection in canines. METHODS: The new MCA device consists of a pair of titanium alloy and neodymium-ferrum-boron magnet (Ti-NdFeB) composite rings. The NdFeB magnetic ring as a core of the device was hermetically sealed inside the biomedical titanium alloy case. Twelve canines were divided into two groups: a MCA group in which the end-to-end anastomoses was made with a new device after resection in the portal vein and a traditional manual suture (TMS) group consisted of 6 canines. The anastomosis time, anastomotic patency and quality were investigated at week 24 postoperatively. RESULTS: The portal vein was reconstructed successfully in all of the animals and they all survived. The duration of portal vein anastomosis was significantly shorter in the MCA group than in the TMS group (8.16+/-1.25 vs 36.24+/-2.17 min, P<0.05). Portography and ultrasound showed that the blood flow was normal without angiostenosis or thrombosis in all of the canines. Hematoxylin-eosin staining and electron microscope scanning showed in contrast to the TMS group, MCA anastomotic intimal was much smoother with more regularly arranged endothelial cells at week 24 postoperatively. CONCLUSIONS: The Ti-NdFeB composite MCA device was applicable in reconstruction of large vessels after resection. This device was easy to use and the anastomosis was functionally better than the traditional sutured anastomosis.


Assuntos
Imãs , Procedimentos de Cirurgia Plástica/instrumentação , Veia Porta/transplante , Enxerto Vascular/instrumentação , Aloenxertos , Ligas , Anastomose Cirúrgica , Animais , Velocidade do Fluxo Sanguíneo , Compostos de Boro , Cães , Desenho de Equipamento , Estudos de Viabilidade , Compostos Férricos , Masculino , Modelos Animais , Neodímio , Veia Porta/diagnóstico por imagem , Veia Porta/fisiopatologia , Portografia , Fatores de Tempo , Titânio , Ultrassonografia Doppler em Cores , Grau de Desobstrução Vascular
19.
J Am Chem Soc ; 136(39): 13558-61, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25233109

RESUMO

Noble metals, especially gold, have been widely used in plasmon resonance applications. Although silver has a larger optical cross section and lower cost than gold, it has attracted much less attention because of its easy corrosion, thereby degrading plasmonic signals and limiting its applications. To circumvent this problem, we report the facile synthesis of superstable AgCu@graphene (ACG) nanoparticles (NPs). The growth of several layers of graphene onto the surface of AgCu alloy NPs effectively protects the Ag surface from contamination, even in the presence of hydrogen peroxide, hydrogen sulfide, and nitric acid. The ACG NPs have been utilized to enhance the unique Raman signals from the graphitic shell, making ACG an ideal candidate for cell labeling, rapid Raman imaging, and SERS detection. ACG is further functionalized with alkyne-polyethylene glycol, which has strong Raman vibrations in the Raman-silent region of the cell, leading to more accurate colocalization inside cells. In sum, this work provides a simple approach to fabricate corrosion-resistant, water-soluble, and graphene-protected AgCu NPs having a strong surface plasmon resonance effect suitable for sensing and imaging.


Assuntos
Alcinos/química , Grafite/química , Nanopartículas/química , Prata/química , Cobre/química , Humanos , Células MCF-7 , Tamanho da Partícula , Polietilenoglicóis/química , Análise Espectral Raman , Propriedades de Superfície
20.
Int J Biol Macromol ; 262(Pt 1): 129911, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320640

RESUMO

The challenge of global climate change has drawn people's attention to the issue of carbon emissions. Reducing the use of petroleum-derived materials and increasing the use of biodegradable materials is a current focus of research, especially in the packaging materials industry. This study focused on the use of environmentally friendly plastics and waste paper as the main materials for packaging films. Poly(butylene succinate-co-lactate) (PBSL) was modified with maleic anhydride (MA) to form a biobased compatibilizer (MPBSL), which was then blended with a mixture (WPS) of waste-paper powder (WP) and silica aerogel powder (SP) to form the designed composite (MPBSL/WPS). The modification of PBSL with MA improved interfacial adhesion between PBSL and WPS. The structure, thermal, and mechanical properties, water vapor/oxygen barrier, toxicity, freshness, and biodegradability of MPBSL/WPS films were evaluated. Compared with the PBSL/WP film, the MPBSL/WPS film exhibited increased tensile strength at break of 4-13.5 MPa, increased initial decomposition loss at 5 wt% of 14-35 °C, and decreased water/oxygen permeabilities of 18-105 cm3/m2·d·Pa. In the water absorption test, the MPBSL/WPS film displayed about 2-6 % lower water absorption than that of the PBSL/WP film. In the cytocompatibility test, both MPBSL/WPS and PBSL/WP membrane were nontoxic. In addition, compared with PBSL/WP film and the control, the MPBSL/WPS film significantly reduced moisture loss, extended the shelf life, and prevented microbial growth in vegetable and meat preservation tests. Both MPBSL/WPS and PBSL/WP films were biodegradable in a 60-day soil biodegradation test; the degradation rate was 50 % when the WP or WPS content was 40 wt%. Our findings indicate that the composites would be suitable for environmentally sustainable packaging materials.


Assuntos
Alcenos , Butileno Glicóis , Ácido Láctico , Anidridos Maleicos , Polímeros , Humanos , Pós , Oxigênio , Succinatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA