Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 7(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36288035

RESUMO

A new formulation (suspension concentrate, SC) of PBQ [1-(4-chlorophenyl)-3-(pyridin-3-yl) urea] was used in water network schistosomiasis-endemic areas to test its molluscicidal efficacy and the acute toxicity to crustaceans. PBQ (20% SC), 26% metaldehyde, and niclosamide suspension concentrate [MNSC (26% SC)] were used both in ditch and field experiments for the molluscicidal efficacy comparison. Acute toxicity tests of two molluscicides were conducted using Neocaridina denticulate and Eriocheir sinensis. Both in the field and ditch experiments, PBQ exhibited comparable molluscicidal efficacy with MNSC. At doses of 0.50 g/m3 and 0.50 g/m2, the snail mortalities were more than 90% three days after PBQ (20% SC) application. Compared with previous tests, PBQ (20% SC) exhibited higher molluscicidal activity than PBQ (25% wettable powder, 25% WP) used in Jiangling and showed similar mollucicidal activity to PBQ (25% WP) used in Dali and Poyang Lake. The 96 h LC50 value of MNSC against Eriocheir sinensis was 283.84 mg a.i./L. At the concentration of PBQ (20% SC) 1000 mg a.i./L, all Eriocheir sinensis were alive. The 96 h LC50 values of PBQ and MNSC against Neocaridina denticulate were 17.67 and 14.05 mg a.i./L, respectively. In conclusion, PBQ (20% SC) had a comparable molluscicidal efficacy with MNSC (26% SC) and PBQ (25% WP). Furthermore, it showed lower toxicity to the crustacean species, better solubility, no floating dust, and convenience for carriage. PBQ (20% SC) was suitable for controlling snails in the water network schistosomiasis-endemic areas.

2.
J Control Release ; 345: 20-37, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248648

RESUMO

Polymeric carriers for RNA therapy offer potential advantages in terms of low immunogenicity, promoting modifiability and accelerating intracellular transport. However, balancing high transfection efficacy with low toxicity remains challenging with polymer-based vehicles; indeed, polyethyleneimine (PEI) remains the "gold standard" polymer for this purpose despite its significant toxicity limitations. Herein, we demonstrate the potential of polyvinylamine (PVAm), a commodity high-charge cationic polymer used in the papermaking industry and has similar structure with PEI, as an alternative carrier for RNA delivery. High levels of transfection of normal, tumor, and stem cells with a variety of RNA cargoes including small interfering RNA (siRNA), microRNA (miRNA), and recombinant RNA can be achieved in vitro under the proper complex conditions. While, both the anti-tumor effect achieved in a xenograft osteosarcoma model and lipid-lowering activity observed in a hyperlipidemia mice indicate the potential for highly effective in vivo activity. Of note, both the transfection efficiency and the cytotoxicity of PVAm compare more favorably with those of PEI, with PVAm offering the additional advantages of simpler purification and significantly lower cost. In addition, the mechanism for the difference in transfection efficiency between PVAm and PEI is explored by molecular docking as well as analyzing the process of association and dissociation between polymers (PVAm and PEI) and nucleic acids. Our research provides a novel, non-toxic, and cost-effective carrier candidate for next generation RNA therapy, and elucidates the potential mechanism of PVAm for its efficient delivery of RNA.


Assuntos
Polietilenoimina , Polímeros , Animais , Excipientes , Humanos , Camundongos , Simulação de Acoplamento Molecular , Polietilenoimina/química , Polímeros/química , Polivinil , RNA Interferente Pequeno , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA