Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 844: 157079, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35779720

RESUMO

Membrane fouling is the Achilles' heel of the reverse osmosis (RO) system for high-quality reclaimed water production. Previous studies have found that after the significant selection effect of traditional disinfection, the remaining disinfection-residual bacteria (DRB) may possess more severe biofouling potentials. To provide more constructive advice for the prevention of biofouling, we compared the RO membrane fouling characteristics of DRB after using five commonly used disinfection methods (NaClO, NH2Cl, ClO2, UV, and O3) and two novel disinfection methods (K2FeO4 and the flow-through electrode system (FES)). Compared with the control group (undisinfected, 21.1 % flux drop), the UV-DRB biofilm aggravated biofouling of the RO membrane (23.4 % flux drop), while the FES, K2FeO4, and NH2Cl treatments showed less severe biofouling, with final flux drops of 6.9 %, 8.1 %, and 8.1 %, respectively. Adenosine triphosphate (ATP) was found to be a capable indicator for predicting the biofouling potential of DRB. Systematic analysis showed that the thickness and density of the DRB biofilms were most closely related to the different fouling degree of RO membranes. Moreover, the relative abundance of bacteria with higher extracellular polymeric substance (EPS) secretion levels, such as Pseudomonas and Sphingomonas, was found closely related with the biofouling degree of RO membranes.


Assuntos
Incrustação Biológica , Purificação da Água , Bactérias , Biofilmes , Incrustação Biológica/prevenção & controle , Desinfecção , Matriz Extracelular de Substâncias Poliméricas , Membranas Artificiais , Osmose , Purificação da Água/métodos
2.
Water Res ; 168: 115150, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606556

RESUMO

The disinfection performance of a flow-through electrode system (FES) was systematically evaluated using different carbonized (C1, C2, and C3) and corresponding graphitized (G1, G2, and G3) carbon fiber felt (CFF) electrodes. The physicochemical and electrochemical properties were characterized to identify the differences among CFFs. Graphitized CFFs (gCFFs) can achieve complete inactivation of Escherichia coli (>6 log) at the voltage of 3 V and flux of 120-3600 L/(m2 h) for high conductivity and chemical stability, while carbonized CFFs (cCFFs) only achieved around 1 log removal with obvious carbon corrosion. For the gCFFs, G1 (>6 log removal) with higher conductivity, better graphite structure, and larger surface area (related to fiber diameter and density) presented better disinfection performance at the flow rate of 30 mL/min than G2 (∼3 log) and G3(∼1 log). Furthermore, no regrowth and reactivation of bacteria occurred during the storage under visible light illumination after FES treatment. Three parallel FESs with G1 were operated continuously for one week (24 h per day, 7 days) treating the solution with an E. coli concentration ranging from 106 to 107 CFU/mL at the applied voltage of 3 V and the flow rate of 20 mL/min. No live bacteria were detected in the effluent of any of these three FESs. In-situ sampling experiments demonstrated that the inactivation of bacteria on anode was the dominant mechanism for FES treatment, which can be attributed to the sequential adsorption, direct-oxidation and desorption process on anode, instead of indirect oxidation by generating chemical oxidants. In addition, hydroxide ion generated from cathode reaction enhanced anode adsorption and inactivation of bacteria by providing alkaline environment. Combining the analysis results of material properties and disinfection performance, the gCFF-based FES was suggested to be a low-cost, high-efficiency, and safe alternative for future water disinfection.


Assuntos
Fibra de Carbono , Purificação da Água , Desinfecção , Eletrodos , Escherichia coli
3.
J Chromatogr A ; 1542: 1-18, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29496190

RESUMO

Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs.


Assuntos
Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/tendências , Estruturas Metalorgânicas/química , Polímeros/química , Técnicas de Química Analítica/normas , Porosidade
4.
Water Res ; 124: 381-387, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28783494

RESUMO

Polyvinyl alcohol (PVA) is widely used in industry but is difficult to degrade. In this study, the synergistic effect of UV irradiation and chlorination on degradation of PVA was investigated. UV irradiation or chlorination alone did not degrade PVA. By contrast, UV/chlorine oxidation showed good efficiency for PVA degradation via generation of active free radicals, such as OH and Cl. The relative importance of these two free radicals in the oxidation process was evaluated, and it was shown that OH contributed more to PVA degradation than Cl did. The degradation of PVA followed pseudo first order kinetics. The rate constant k increased linearly from 0 min-1 to 0.3 min-1 with increasing chlorine dosage in range of 0 mg/L to 20 mg/L. However, when the chlorine dosage was increased above 20 mg/L, scavenging effect of free radicals occurred, and the degradation efficiency of PVA did not increase much more. Acidic media increased the degradation efficiency of PVA by UV/chlorine oxidation more than basic or neutral media because of the higher ratio of [HOCl]/[OCl-], higher free radical quantum yields, and the lower free radical quenching effect under acidic conditions. Results of Fourier Transform Infrared Spectroscopy showed that carbonyl groups in degradation products were formed during UV/chlorine oxidation, and a possible degradation pathway via alcohol to carbonyl was proposed.


Assuntos
Álcool de Polivinil/química , Poluentes Químicos da Água/química , Purificação da Água , Cloro , Cinética , Oxirredução , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA