Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 14(9)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29251423

RESUMO

Photodynamic therapy (PDT) utilizing light-induced reactive oxygen species (ROS) is a promising alternative to combat antibiotic-resistant bacteria and biofilm. However, the photosensitizer (PS)-modified surface only exhibits antibacterial properties in the presence of light. It is known that extended photoirradiation may lead to phototoxicity and tissue hypoxia, which greatly limits PDT efficiency, while ambient pathogens also have the opportunity to attach to biorelevant surfaces in medical facilities without light. Here, an antimicrobial film composed of black phosphorus nanosheets (BPSs) and poly (4-pyridonemethylstyrene) endoperoxide (PPMS-EPO) to control the storage and release of ROS reversibly is introduced. BPS, as a biocompatible PS, can produce high singlet oxygen under the irradiation of visible light of 660 nm, which can be stably stored in PPMS-EPO. The ROS can be gradually thermally released in the dark. In vitro antibacterial studies demonstrate that the PPMS-EPO/BPS film exhibits a rapid disinfection ability with antibacterial rate of 99.3% against Escherichia coli and 99.2% against Staphylococcus aureus after 10 min of irradiation. Even without light, the corresponding antibacterial rate reaches 76.5% and 69.7%, respectively. In addition, incorporating PPMS significantly improves the chemical stability of the BPS.


Assuntos
Fósforo/química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/química , Nanoestruturas/química , Fotoquimioterapia , Polímeros/química
2.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188012

RESUMO

Preventing multidrug-resistant bacteria-related infection and simultaneously improving osseointegration are in great demand for orthopedic implants. However, current strategies are still limited to a combination of non-U.S. Food and Drug Administration-approved antibacterial and osteogenic agents. Here, we develop a food-grade probiotic-modified implant to prevent methicillin-resistant Staphylococcus aureus (MRSA) infection and accelerate bone integration. Lactobacillus casei is cultured on the surface of alkali heat-treated titanium (Ti) substrates and inactivated by ultraviolet irradiation to avoid sepsis induced by viable bacteria. This inactivated L. casei biofilm shows excellent 99.98% antibacterial effectiveness against MRSA due to the production of lactic acid and bacteriocin. In addition, the polysaccharides in the L. casei biofilm stimulate macrophages to secrete abundant osteogenic cytokines such as oncostatin M and improve osseointegration of the Ti implant. Inactivated probiotics modification can be a promising strategy to endow implants with both excellent self-antibacterial activity and osteointegration ability.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Probióticos , Antibacterianos/farmacologia , Biofilmes , Materiais Revestidos Biocompatíveis/farmacologia , Osseointegração , Probióticos/farmacologia , Propriedades de Superfície , Titânio/farmacologia
3.
Biomater Sci ; 7(12): 5383-5387, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626246

RESUMO

Xerogels usually possess a stable structure and have a low swelling rate due to their inferior dynamics. Herein, a xerogel was synthesized by "imitative" click chemistry based on lipoic acid for picking up bacteria from wound sites, and thus accelerating tissue repair. The cross-linking structure of disulfide and thioether inside the xerogel not only exhibited good ductility and intrinsic self-healing performance, but also showed superior biocompatibility. The xerogel captured more than 60% of the bacteria Staphylococcus aureus via strong electrostatic adsorption in the colonies with a bacteria count of 106. In addition, this xerogel can stick to the skin in the form of patches in the wounds during therapy for wound healing and can be easily stripped from the skin after treatment, which makes it appropriate for the portable therapy of bacteria-infected wounds in emergency circumstances.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Ácido Tióctico/química , Infecção dos Ferimentos/microbiologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Química Click , Modelos Animais de Doenças , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Eletricidade Estática , Adesivo Transdérmico , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico
4.
Adv Mater ; 30(31): e1801808, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29923229

RESUMO

Bone-implant-associated infections are common after orthopedic surgery due to impaired host immune response around the implants. In particular, when a biofilm develops, the immune system and antibiotic treatment find it difficult to eradicate, which sometimes requires a second operation to replace the infected implants. Most strategies have been designed to prevent biofilms from forming on the surface of bone implants, but these strategies cannot eliminate the biofilm when it has been established in vivo. To address this issue, a nonsurgical, noninvasive treatment for biofilm infection must be developed. Herein, a red-phosphorus-IR780-arginine-glycine-aspartic-acid-cysteine coating on titanium bone implants is prepared. The red phosphorus has great biocompatibility and exhibits efficient photothermal ability. The temperature sensitivity of Staphylococcus aureus biofilm is enhanced in the presence of singlet oxygen (1 O2 ) produced by IR780. Without damaging the normal tissue, the biofilm can be eradicated through a safe near-infrared (808 nm) photothermal therapy at 50 °C in vitro and in vivo. This approach reaches an antibacterial efficiency of 96.2% in vivo with 10 min of irradiation at 50 °C. Meanwhile, arginine-glycine-aspartic-acid-cysteine decorated on the surface of the implant can improve the cell adhesion, proliferation, and osteogenic differentiation.


Assuntos
Biofilmes/efeitos da radiação , Substitutos Ósseos/química , Raios Infravermelhos , Fósforo/química , Animais , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Peptídeos/química , Fósforo/farmacologia , Fototerapia , Próteses e Implantes , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Staphylococcus aureus/fisiologia , Temperatura , Titânio/química
5.
ACS Appl Mater Interfaces ; 6(20): 17323-45, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25233376

RESUMO

Because of the excellent mechanical properties and good biocompatibility, titanium-based metals are widely used in hard tissue repair, especially load-bearing orthopedic applications. However, bacterial infection and complication during and after surgery often causes failure of the metallic implants. To endow titanium-based implants with antibacterial properties, surface modification is one of the effective strategies. Possessing the unique organic structure composed of molecular and functional groups resembling those of natural organisms, functionalized polymeric nanoarchitectures enhance not only the antibacterial performance but also other biological functions that are difficult to accomplish on many conventional bioinert metallic implants. In this review, recent advance in functionalized polymeric nanoarchitectures and the associated antimicrobial mechanisms are reviewed.


Assuntos
Antibacterianos/farmacologia , Nanoestruturas/química , Polímeros/farmacologia , Próteses e Implantes , Titânio/farmacologia , Aderência Bacteriana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA