Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 18(1): 111, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778125

RESUMO

BACKGROUND: Electrospun (e-spun) nanofibers for wound dressing have attracted wide attention due to its large specific surface area, large porosity and breathability. Compared with solution electrospinning (e-spinning), melt e-spinning is more bio-friendly without toxic solvent participation, which provides the possibility of in situ e-spinning on wounds directly. However, previously reported melt e-spinning devices were usually bulky and cumbersome due to their necessary heating unit, and different components were separated to avoid electrostatic interference. RESULTS: In this article, we report on a self-powered hand-held melt e-spinning gun which can work without any external power supply (outdoors). The problem of electrostatic interference for this integrated device was solved by using a special high heat transfer insulation unit. The apparatus is easy and safe to operate by a single hand due to its small volume (24 × 6 × 13 cm3) and light weight (about 450 g). Some biodegradable polymers, for example, polycaprolactone (PCL) fibers were successful e-spun onto wounds directly by using this dressing gun. CONCLUSIONS: PCL fibrous membrane has good biocompatibility and can be in situ electrospun to wound surface as a wound dressing by the portable melt e-spinning gun. Besides wound dressing, this hand-held melt e-spinning gun may be used in 3D printing and experimental teaching demonstration aids.


Assuntos
Bandagens , Técnicas Eletroquímicas , Nanofibras , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Fibroblastos/efeitos dos fármacos , Masculino , Nanofibras/química , Nanofibras/toxicidade , Poliésteres/química , Poliésteres/toxicidade , Porosidade , Ratos , Ratos Sprague-Dawley , Temperatura
2.
BJU Int ; 108(6): 901-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21223480

RESUMO

OBJECTIVE: • To study the operability and effectiveness of a biodegradable ureteral stent for clinical treatment of ureteral war injury using a canine model. MATERIALS AND METHODS: • A device was designed and employed to generate firearm fragment wounds in unilateral ureters (on randomly chosen sides) of nine beagles (Group A). The wounded ureters were then debrided and sutured. • Intravenous pyelography (IVP) and radioactive renography were performed 40, 80 and 120 days postoperatively. In Group B, firearm fragment wounds were made to the bilateral ureters in nine beagles. A polylactic acid stent was placed unilaterally (on a randomly chosen side) whereas the ureter on the other side was debrided and sutured without stenting. • Both IVP and radioactive renography were performed 40, 80 and 120 days postoperatively. The operability and effectiveness of the biodegradable ureteral stent were studied thereafter. RESULTS: • In Group A, hydronephrosis and hydroureter occurred and worsened postoperatively on the wounded sides in all nine beagles. The ratio of the renal partial concentration indices (RPCI) between the kidneys (unwounded side : wounded side) increased. • The ratio of the kidney washout half-time between the kidneys (unwounded side : wounded side) decreased. In Group B, neither hydronephrosis nor hydroureter was found postoperatively in the stented ureters but both occurred in the unstented ureters in all nine beagles. • The ratio of RPCI between kidneys (stented side : unstented side) increased whereas the kidney washout half-time ratio between the stented and unstented sides decreased. Differences were significant. CONCLUSION: • In Group A, the new canine model for firearm fragment wounds was tested and proved to be operable and effective. In Group B, hydronephrosis and hydroureter were effectively prevented in ureters by biodegradable stent placement compared with the non-stented ureters where hydronephrosis and hydroureter occurred. The renal concentration capacity was effectively protected and the half-time of kidney washout was shortened.


Assuntos
Implantes Absorvíveis , Ácido Láctico/uso terapêutico , Polímeros/uso terapêutico , Stents , Ureter/lesões , Guerra , Ferimentos por Arma de Fogo/cirurgia , Animais , Cães , Estudos de Viabilidade , Feminino , Hidronefrose/prevenção & controle , Masculino , Poliésteres , Complicações Pós-Operatórias/prevenção & controle , Radiografia , Ureter/diagnóstico por imagem , Doenças Ureterais/prevenção & controle , Ferimentos por Arma de Fogo/diagnóstico por imagem
3.
Mater Sci Eng C Mater Biol Appl ; 110: 110708, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204020

RESUMO

Magnetic fibrous membrane used to generate heat under the alternating magnetic field (AMF) has attracted wide attention due to their application in magnetic hyperthermia. However, there is not magnetic fibrous membrane prepared by melt electrospinning (e-spinning) which is a solvent-free, bio-friendly technology. In this work, polycaprolactone (PCL)/Fe3O4 fiber membrane was prepared by melt e-spinning and using homemade self-powered portable melt e-spinning apparatus. The hand-held melt e-spinning apparatus has a weight of about 450 g and a precise size of 24 cm in length, 6 cm in thickness and 13 cm in height, which is more portable for widely using in the medical field. The PCL/Fe3O4 composite fibers with diameters of 4-17 µm, are very uniform. In addition, the magnetic composite fiber membrane has excellent heating efficiency and thermal cycling characteristics. The results indicated that self-powered portable melt e-spinning apparatus and PCL/Fe3O4 fiber membrane may provide an attractive way for hyperthermia therapy.


Assuntos
Hipertermia Induzida , Nanopartículas Magnéticas de Óxido de Ferro/química , Membranas Artificiais , Nanofibras/química , Poliésteres/química , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Nanofibras/ultraestrutura
4.
Nanoscale ; 10(37): 17751-17760, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30211423

RESUMO

Real-time personalized motion monitoring and analysis are important for human health. Thus, to satisfy the needs in this area and the ever-increasing demand for wearable electronics, we design and develop a wireless piezoelectric device consisting of a piezoelectric pressure sensor based on electrospun PVDF/BaTiO3 nanowire (NW) nanocomposite fibers and a wireless circuit system integrated with a data conversion control module, a signal acquisition and amplification module, and a Bluetooth module. Finally, real-time piezoelectric signals of human motion can be displayed by an App on an Android mobile phone for wireless monitoring and analysis. This wireless piezoelectric device is proven to be sensitive to human motion such as squatting up and down, walking, and running. The results indicate that our wireless piezoelectric device has potential applications in wearable medical electronics, particularly in the fields of rehabilitation and sports medicine.


Assuntos
Movimento , Nanocompostos , Polivinil , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Telefone Celular , Humanos , Aplicativos Móveis
5.
J Biomed Mater Res A ; 100(10): 2612-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22615210

RESUMO

The study is aimed to evaluate the differentiation potential of human adipose-derived stem cells (hADSCs) into urothelial lineage, and to assess possibility of constructing ureteral grafts using the differentiated hADSCs and a novel polylactic acid (PLA)/collagen scaffolds. HADSCs were indirectly cocultured with urothelial cells in a transwell coculture system for urothelial differentiation. After 14 days coculturing, differentiation was evaluated by detecting urothelial lineage markers (cytokeratin-18 and uroplakin 2) in mRNA and protein level. Then the differentiated hADSCs were seeded onto PLA/collagen ureteral scaffolds and cultured in vitro for 1 week. The biocompatibility of the scaffolds was tested by scanning electron microscopy (SEM) and MTT analysis. At last, the cell/scafflod grafts were subcutaneously implanted into 4-week-old female athymic mice for 14 days. The results demonstrated that the hADSCs could be efficiently induced into urothelial lineage by indirect coculture. The differentiated cells seeded onto the PLA/collagen ureteral scaffolds survived up to 7 days and maintained proliferation in vitro, which indicated that the scaffolds displayed good biocompatibility. In vivo study showed that the differentiated cells in the grafts survived, formed multiple layers on the scaffolds and expressed urothelial lineage markers. In conclusion, hADSCs may serve as an alternative cell resource in cell-based tissue engineering for ureteral reconstruction. These cells could be employed to construct a model of ureteral engineering grafts and be effectively applied in vivo, which could be a new strategy on ureteral replacement with applicable potential in clinical research.


Assuntos
Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Ureter/transplante , Urotélio/citologia , Tecido Adiposo/citologia , Adulto , Idoso , Animais , Biodegradação Ambiental , Biomarcadores/metabolismo , Linhagem da Célula/efeitos dos fármacos , Separação Celular , Rastreamento de Células , Técnicas de Cocultura , Feminino , Humanos , Teste de Materiais , Camundongos , Pessoa de Meia-Idade , Implantação de Prótese , Células-Tronco/efeitos dos fármacos , Propriedades de Superfície , Ureter/ultraestrutura , Adulto Jovem
6.
Chin Med J (Engl) ; 124(19): 3087-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22040561

RESUMO

BACKGROUND: Efficient cell adhesion and proliferation is a central issue in cell-based tissue engineering, which offers great promise for repair of urethral defects or strictures. This study evaluated the adhesion and growth of rabbit uroepithelium on a surface-modified three-dimensional poly-L-lactic acid (PLLA) scaffold. METHODS: Urethral mucosa were harvested from male New Zealand rabbits and the urothelium were dissociated and then cultured. Immunocytochemistry on cultured uroepithelium for pancytokeratin and uroplakin II and TE-7 confirmed pure populations. After in vitro proliferation, cells were seeded onto a surface-modified urethral scaffold with non-knitted filaments. The morphology and viability of the cells were examined by immunohistochemical and fluorescence staining. Inverted and scanning microscopes were used to document cell growth and adhesion. RESULTS: Three to five days after primary culture, the uroepithelial cells gradually became confluent, assuming a cobblestone pattern. The filaments of the urethral scaffold had excellent biocompatibility and allowed growth of the uroepithelium, without affecting viability. The uroepithelial cells adhered to and grew well on the scaffold. After 3 - 7 days, the cells grew vigorously and meshes of the scaffold were full of uroepitheliums. CONCLUSIONS: The surface-modified urethral scaffold with non-knitted filaments allows the growth of uroepithelium and can serve as a carrier for the tissue engineering of urethra.


Assuntos
Implantes Absorvíveis , Células Epiteliais/fisiologia , Engenharia Tecidual/métodos , Uretra/citologia , Animais , Células Cultivadas , Ácido Láctico , Masculino , Poliésteres , Polímeros , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA