Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(43): 49931-49942, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856675

RESUMO

The skin secretion of Andrias davidianus (SSAD) is a novel biological adhesive raw material under development. This material exhibits robust adhesion while maintaining the flexibility of the wound. It also has the potential for large-scale production, making it promising for practical application explore. Hence, in-depth research on methods to fine-tune SSAD properties is of great importance to promote its practical applications. Herein, we aim to enhance the adhesive and healing properties of SSAD by incorporating functional components. To achieve this goal, we selected 3,4-dihydroxy-l-phenylalanine and vaccarin as the functional components and mixed them with SSAD, resulting in a new bioadhesive, namely, a formulation termed "enhanced SSAD" (ESSAD). We found that the ESSAD exhibited superior adhesive properties, and its adhesive strength was improved compared with the SSAD. Moreover, ESSAD demonstrated a remarkable ability to promote wound healing. This study presents an SSAD-based bioadhesive formulation with enhanced properties, affirming the feasibility of developing SSAD-based adhesive materials with excellent performance and providing new evidence for the application of SSAD. This study also aims to show that SSAD can be mixed with other substances, and addition of effective components to SSAD can be studied to further adjust or improve its performance.


Assuntos
Adesivos Teciduais , Cicatrização , Humanos , Adesivos/farmacologia , Pele , Adesivos Teciduais/farmacologia , Aderências Teciduais , Muco , Hidrogéis
2.
ACS Macro Lett ; 11(6): 805-812, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35666550

RESUMO

A versatile hydrophilic and antifouling coating was designed and prepared based on catechol-modified four-arm polyethylene glycol. The dopamine (DA) molecules were grafted onto the end of the four-arm polyethylene glycol carboxyl (4A-PEG-COOH) through the amidation reaction, which was proven by 1H NMR and FTIR analysis, assisting the strong adhesion of PEG on the surface of various types of materials, including metallic, inorganic, and polymeric materials. The reduction of the water contact angle and the bacteria-repellent and protein-repellent effects indicated that the coating had good hydrophilicity and antifouling performance. Raman spectroscopy analysis demonstrated the affinity between the polymeric surface and water, which further confirmed the hydrophilicity of the coating. Finally, in vitro cytotoxicity assay demonstrated good biocompatibility of the coating layer.


Assuntos
Incrustação Biológica , Polietilenoglicóis , Incrustação Biológica/prevenção & controle , Dopamina , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/farmacologia , Água
3.
J Control Release ; 345: 20-37, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248648

RESUMO

Polymeric carriers for RNA therapy offer potential advantages in terms of low immunogenicity, promoting modifiability and accelerating intracellular transport. However, balancing high transfection efficacy with low toxicity remains challenging with polymer-based vehicles; indeed, polyethyleneimine (PEI) remains the "gold standard" polymer for this purpose despite its significant toxicity limitations. Herein, we demonstrate the potential of polyvinylamine (PVAm), a commodity high-charge cationic polymer used in the papermaking industry and has similar structure with PEI, as an alternative carrier for RNA delivery. High levels of transfection of normal, tumor, and stem cells with a variety of RNA cargoes including small interfering RNA (siRNA), microRNA (miRNA), and recombinant RNA can be achieved in vitro under the proper complex conditions. While, both the anti-tumor effect achieved in a xenograft osteosarcoma model and lipid-lowering activity observed in a hyperlipidemia mice indicate the potential for highly effective in vivo activity. Of note, both the transfection efficiency and the cytotoxicity of PVAm compare more favorably with those of PEI, with PVAm offering the additional advantages of simpler purification and significantly lower cost. In addition, the mechanism for the difference in transfection efficiency between PVAm and PEI is explored by molecular docking as well as analyzing the process of association and dissociation between polymers (PVAm and PEI) and nucleic acids. Our research provides a novel, non-toxic, and cost-effective carrier candidate for next generation RNA therapy, and elucidates the potential mechanism of PVAm for its efficient delivery of RNA.


Assuntos
Polietilenoimina , Polímeros , Animais , Excipientes , Humanos , Camundongos , Simulação de Acoplamento Molecular , Polietilenoimina/química , Polímeros/química , Polivinil , RNA Interferente Pequeno , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA