Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(14): 7979-7990, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32462812

RESUMO

Correlation between periodontitis and atherosclerosis is well established, and the inherent mechanisms responsible for this relationship remain unclear. The biological function of growth arrest-specific 6 (gas6) has been discovered in both atherosclerosis and inflammation. Inhibitory effects of gas6 on the expression of inflammatory factors in human umbilical vein endothelial cells (HUVECs) stimulated by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS) were reported in our previous research. Herein, the effects of gas6 on monocytes-endothelial cells interactions in vitro and their probable mechanisms were further investigated. Gas6 protein in HUVECs was knocked down with siRNA or overexpressed with plasmids. Transwell inserts and co-culturing system were introduced to observe chemotaxis and adhering affinity between monocytes and endothelial cells in vitro. Expression of gas6 was decreased in inflammatory periodontal tissues and HUVECs challenged with P. gingivalis-LPS. The inhibitory effect of gas6 on chemotaxis and adhesion affinity between monocytes and endothelial cells was observed, and gas6 promoted Akt phosphorylation and inhibited NF-κB phosphorylation. To our best knowledge, we are first to report that gas6 inhibit monocytes-endothelial cells interactions in vitro induced by P. gingivalis-LPS via Akt/NF-κB pathway. Additionally, inflammation-mediated inhibition of gas6 expression is through LncRNA GAS6-AS2, rather than GAS6-AS1, which is also newly reported.


Assuntos
Comunicação Celular , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Adesão Celular/imunologia , Comunicação Celular/imunologia , Células Cultivadas , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lipopolissacarídeos/imunologia , Monócitos/imunologia , Porphyromonas gingivalis/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
2.
J Immunol Res ; 2021: 9577695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34734092

RESUMO

Periodontitis involves chronic inflammation of the tissues around the teeth caused by plaque and the corresponding immune response. Growth arrest-specific protein 6 (GAS6) and AXL receptor tyrosine kinase (AXL) are known to be involved in inflammatory diseases, while signal transducer and activator of transcription-1 (STAT1) and suppressor of cytokine signaling (SOCS) are related to inflammatory processes. Moreover, miRNA34a directly targets AXL to regulate the AXL expression. However, the specific roles of GAS6 and AXL in periodontitis remain unclear. This study was designed to explore the effect and mechanism of AXL on the expression of inflammatory cytokines induced by Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in human periodontal ligament cells (hPDLCs). The effects of different concentrations of P. gingivalis LPS on the expression of GAS6/AXL in hPDLCs were observed. Additionally, the effect of LPS on AXL was investigated by transfection of the miRNA34a inhibitor. AXL was knocked down or overexpressed to observe the release of inflammatory cytokines interleukin- (IL-) 8 and IL-6. The results showed that the expression levels of GAS6 and AXL decreased after P. gingivalis LPS infection. Transfection of a miR-34a inhibitor to hPDLCs demonstrated a role of miR-34a in the downregulation of AXL expression induced by LPS. Moreover, AXL knockdown or overexpression influencing the expression of IL-8 and IL-6 was investigated under LPS stimulation. AXL knockdown decreased the expression of STAT1 and SOCS1/3. Overall, these results demonstrate that AXL inhibits the expression of LPS-induced inflammatory cytokines in hPDLCs and that STAT1 and SOCS1/3 are involved in the regulation of inflammation by GAS6/AXL.


Assuntos
Periodontite/imunologia , Porphyromonas gingivalis/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipopolissacarídeos/imunologia , Ligamento Periodontal/citologia , Ligamento Periodontal/imunologia , Ligamento Periodontal/microbiologia , Ligamento Periodontal/patologia , Periodontite/microbiologia , Periodontite/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Receptor Tirosina Quinase Axl
3.
Artigo em Inglês | MEDLINE | ID: mdl-33435295

RESUMO

Smoking is a well-recognized risk factor for oral mucosal and periodontal diseases. Nicotine is an important component of cigarette smoke. This study aims to investigate the impact of nicotine on the viability and inflammatory mediator production of an oral epithelial cell line in the presence of various inflammatory stimuli. Oral epithelial HSC-2 cells were challenged with nicotine (10-8-10-2 M) for 24 h in the presence or absence of Porphyromonas gingivalis lipopolysaccharide (LPS, 1 µg/mL) or tumor necrosis factor (TNF)-α (10-7 M) for 24 h. The cell proliferation/viability was determined by MTT assay. Gene expression of interleukin (IL)-8, intercellular adhesion molecule (ICAM)-1, and ß-defensin was assayed by qPCR. The production of IL-8 protein and cell surface expression of ICAM-1 was assessed by ELISA and flow cytometry, respectively. Proliferation/viability of HSC-2 cells was unaffected by nicotine at concentrations up to 10-3 M and inhibited at 10-2 M. Nicotine had no significant effect on the basal expression of IL-8, ICAM-1, and ß-defensin. At the same time, it significantly diminished P. gingivalis LPS or the TNF-α-induced expression levels of these factors. Within the limitations of this study, the first evidence was provided in vitro that nicotine probably exerts a suppressive effect on the production of inflammatory mediators and antimicrobial peptides in human oral epithelial cells.


Assuntos
Nicotina , Porphyromonas gingivalis , Células Cultivadas , Células Epiteliais , Humanos , Mediadores da Inflamação , Lipopolissacarídeos/toxicidade , Nicotina/toxicidade , Fator de Necrose Tumoral alfa/genética
4.
Nanoscale ; 11(14): 6677-6684, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30899928

RESUMO

Circulating tumor cells (CTCs) are important markers for cancer diagnosis and treatment, but it is still a challenge to recognize and isolate CTCs because they are very rare in the blood. To selectively recognize CTCs and improve the capture efficiency, micro/nanostructured substrates have been fabricated for this application; however the size of CTCs is often ignored in designing and engineering micro/nanostructured substrates. Herein, a spiky polymer micropillar array is fabricated for capturing CTCs with high efficiency. The surface of the micropillar is cactus-like, and is composed of nanospikes. This hierarchical polymer array is designed according to the size of CTCs, which allows for more interactions of the CTCs with the array by setting the size of gaps among the micropillars to match with the CTCs. This polymer array is created by molding on an ordered silicon array, and then it is coated with an antiepithelial cell adhesion molecule antibody (anti-EpCAM). After co-culture with MCF-7 cells for 45 min, the capture efficiency of this array for CTCs is up to 91% ± 2%. Moreover, the anti-EpCAM modified polymer micropillar arrays present an excellent capacity to isolate CTCs from the whole blood samples of breast cancer patients. This study may provide a new concept for capturing target cells by designing and engineering micro/nanostructured substrates according to the size of target cells.


Assuntos
Neoplasias da Mama/patologia , Nanoestruturas/química , Células Neoplásicas Circulantes/química , Anticorpos Imobilizados/química , Neoplasias da Mama/sangue , Separação Celular , Técnicas de Cocultura , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Células MCF-7 , Análise em Microsséries , Células Neoplásicas Circulantes/metabolismo , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA