Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Langmuir ; 38(15): 4578-4588, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380840

RESUMO

Polyetherketoneketone (PEKK) is considered to be a potential substitute material for metal bone implants because of its advantageous biocompatibility, chemical stability, and mechanical properties, but clinical application has been severely restricted due to PEKK's lack of antibacterial ability and biological activity. In this study, LL-37, a natural human antimicrobial peptide, was successfully modified on the PEKK surface with polydopamine as the intermediate layer and released continuously for more than 6 days. The results of the MTT assay, colony counts, and Live/Dead staining demonstrated that compared to unmodified PEKK, the LL-37-modified PEKK significantly inhibited the adhesion, vitality, and bacterial biofilm growth of Staphylococcus aureus and Escherichia coli in a concentration-dependent way. Furthermore, the LL-37-modified PEKK enhanced biocompatibility (cell adhesion and viability) and promoted osteogenic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Our data suggested that LL-37-modified PEKK might be a promising material for use in orthopedic implants.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Antibacterianos/farmacologia , Benzofenonas/química , Diferenciação Celular , Humanos , Polímeros
2.
Environ Res ; 210: 112939, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35157917

RESUMO

The research on transportation of river microplastics (MPs) mainly focuses on the estimations of the total contents of river MPs entering the ocean, while the related transportation processes and influence factors were still largely unknown. In our study, the role of mangrove forest, a special tropical ecosystem in the estuary, on the transportations of MPs from rivers to ocean was explored. Except for the ND river with the absence of mangrove forest, the MPs collected from the water sample of the river upstream were much higher than their corresponding downstream (p < 0.05), with the interception rate of riverine MPs by mangrove forests ranging from 12.86% to 56% in dry season and 10.57%-42% in rainy season. The MPs with the characteristics of high density, larger size and regular shape were more easily intercepted. Furthermore, the combined effects of ecological indicators, the properties of mangrove and the hydrodynamic factors jointly determined the interception rates of MPs. This study provides a new perspective and data support for quantifying mangrove forests intercepting MPs in rivers as a factor of MPs retention in global rivers.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água/análise , Áreas Alagadas
3.
J Mater Sci Mater Med ; 26(1): 5360, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25596860

RESUMO

The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.


Assuntos
Osso e Ossos/patologia , Durapatita/química , Poliésteres/química , Alicerces Teciduais/química , Animais , Substitutos Ósseos , Fêmur/diagnóstico por imagem , Fêmur/patologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Porosidade , Impressão Tridimensional , Coelhos , Radiografia , Estresse Mecânico , Engenharia Tecidual/métodos
4.
Water Res ; 249: 120995, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071907

RESUMO

Myriad inherent and variable environmental features are controlling the assembly and succession of bacterial communities colonizing on mangrove microplastics (MPs). However, the mechanisms governing mangrove MPs-associated bacterial responses to environmental changes still remain unknown. Here, we assessed the dissimilarities of MPs-associated bacterial composition, diversity and functionality as well as quantified the niche variations of each taxon on plastispheres along river-mangrove-ocean and mangrove landward-to-seaward gradients in the Beibu Gulf, China, respectively. The bacterial richness and diversity as well as the niche breadth on mangrove sedimentary MPs dramatically decreased from landward to seaward regions. Characterizing the niche variations linked the difference of ecological drivers of MPs-associated bacterial populations and functions between river-mangrove-ocean (microplastic properties) and mangrove landward-to-seaward plastispheres (sediment physicochemical properties) to the trade-offs between selective stress exerted by inherent plastic substrates and microbial competitive stress imposed by environmental conditions. Notably, Rhodococcus erythropolis was predicted to be the generalist species and closely associated to biogeochemical cycles of mangrove plastispheres. Our work provides a reliable pathway for tackling the hidden mechanisms of environmental factors driving MPs-associated microbe from perspectives of niches and highlights the spatial dynamic variations of mangrove MPs-associated bacteria.


Assuntos
Microplásticos , Áreas Alagadas , Plásticos , Bactérias , China
5.
J Hazard Mater ; 467: 133698, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335603

RESUMO

Mangrove leaves have been acknowledged as crucial sink for coastal microplastics (MPs). Whereas, the temporal dynamics of MPs intercepted by mangrove leaves have remained poorly understood. Here, we detected MPs intercepted by submerged and non-submerged mangrove leaves over time and the potential driving factors. Abundance and characteristics of MPs interception by mangrove leaves exhibited dynamic fluctuations, with the coefficient of variation (CV) of submerged mangrove leaves (CV = 0.604; 1.76 n/g to 15.45 n/g) being approximately twofold higher than non-submerged mangrove leaves (CV = 0.377; 0.74 n/g to 3.28 n/g). Partial least squares path model (PLS-PM) analysis further illustrated that MPs abundance on submerged mangrove leaves were negative correlated to hydrodynamic factors (i.e., current velocity and tidal range). Intriguingly, secreted salt as a significantly driver of MPs intercepted by mangrove leaves. Results of this work highlights that MPs intercepted by mangrove leaves is characterized by dynamic fluctuations and reveals the importance of hydrodynamic factors and secreted salt. Overall, this work identifies the pivotal buffering role played by mangrove leaves in intercepting MPs, which provides basic knowledge for better understanding of microplastic pollution status and control from mangrove plants.


Assuntos
Microplásticos , Plásticos , Hidrodinâmica , Cloreto de Sódio , Transporte Biológico , Nonoxinol
6.
J Hazard Mater ; 476: 135192, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39002479

RESUMO

Microplastics (MPs) are emerging as anthropogenic vectors to form plastisphere, facilitating microbiome colonization and pathogenic dissemination, thus contributing to environmental and health crises across various ecosystems. However, a knowledge gap persists regarding MPs risks and their driving factors in certain unique and vulnerable ecosystems, such as Karst travertine lakes, some of which are renowned World Natural Heritage Sites under ever-increasing tourism pressure. We hypothesized that tourism activities serve as the most important factor of MPs pollution, whereas intrinsic features, including travertine deposition can exacerbate potential environmental risks. Thus, metagenomic approaches were employed to investigate the geographical distribution of the microbiome, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their combined environmental risks in Jiuzhaigou and Huanglong, two famous tourism destinations in Southwest China. The plastisphere risks were higher in Huanglong, contradicting our hypothesis that Jiuzhaigou would face more crucial antibiotic risks due to its higher tourist activities. Specifically, the levels of Lipopolysaccharide Lewis and fosD increased by sevenfold and 20-fold, respectively, from upstream to downstream in Huanglong, whereas in Jiuzhaigou, no significant accrual was observed. Structural equation modeling results showed that travertine deposition was the primary contributor to MPs risks in alpine karstic lakes. Our findings suggest that tourism has low impact on MPs risks, possibly because of proper management, and that travertine deposition might act as an MPs hotspot, emphasizing the importance of considering the unique aspects of travertine lakes in mitigating MPs pollution and promoting the sustainable development of World Natural Heritage Sites.


Assuntos
Lagos , Microplásticos , Turismo , Poluentes Químicos da Água , Lagos/microbiologia , Microplásticos/toxicidade , China , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental , Microbiota/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética
7.
Sci Total Environ ; 899: 165611, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478953

RESUMO

Mangrove sediment is acknowledged as the critical sink of microplastics (MPs). However, the potential effect of mangrove root systems on the MPs migration in sediment remains largely unknown. Here, our study characterized the spatial distribution of MPs trapped in root hair, rhizosphere, and non-rhizosphere zones, and analyzed their correlations with physicochemical properties of sediments. The significantly increased MPs abundances toward root systems shed light on the distinct effect on the migration of MPs exerted by mangrove root systems. Partial least squares path modeling (PLS-PM) analysis revealed that pore water content and pH influenced the abundances of different MP characteristics (shape, color, size, and type) and further promoted the accumulation of MPs toward the root systems. In different mangrove areas from landward to seaward, other sediment properties (median grain size, clay content, and salinity) also controlled MP distribution. Additionally, smaller-sized MPs (<1000 µm) were more easily transported to the root systems. Our study emphasizes the importance of considering root systems effect when investigating the mechanisms of MPs distribution and migration in mangrove sediments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental
8.
J Hazard Mater ; 459: 132137, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37499500

RESUMO

Microplastics (MPs) and marine lipophilic phycotoxins (MLPs) are two classes of emerging contaminants. Together, they may exacerbate the negative impacts on nearshore marine ecosystems. Herein, the loading of 14 representative MLPs, closely related to toxin-producing algae, on MPs and their relations with colorful MPs have been explored for the first time based on both field and lab data. The objectives of our study are to explore the roles of multiple factors (waterborne MLPs and MP characteristics) in the loading of MLPs by MPs with the applications of various statistical means, and to further explore the role of the color of MP in the loading of specific MLPs through lab simulation experiments. Our results demonstrated that MPs color determined the loading of some specific MLPs on MPs and green MPs can load much more than other colorful fractions (p < 0.05). These interesting phenomena illustrated that the color effects on the loading processes of MLPs on MPs are a dynamic process, and it can be well explained by the shading effect of MP color, which may affect the growth and metabolism of the attached toxic-producing algae on MPs and hence the production of specific MLPs. Furthermore, loading of MLPs on MPs can be considered as the comprehensive physicochemical and biological processes. Our results caution us that special attention should be paid to explore the real-time dynamic color shading effects on all kinds of bio-secreted contaminants loading on MPs, and highlight the necessary to comprehensive investigate the interaction between biota, organic contaminants and MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental
9.
Water Res ; 223: 119018, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057234

RESUMO

Microplastics (MPs) are emerging as anthropogenic vectors for the colonization and transportation of microbial communities in aquatic ecosystems. However, the composition of the microbiome and its environmental risk on field MPs at watershed scale has rarely been explored. Here, geographical distributions of microbiome, antibiotic resistance genes (ARGs) and virulence factors (VFs) on field MPs at watershed scale were characterized and their potential environmental risks were evaluated based on the data from metagenomic analyzes. The succession of microbial communities on MPs was observed along the watershed, and some ARGs and VFs were significantly enriched on MPs in urban region in comparison with rural region. Potential environmental risk of MPs conducted by Projection Pursuit Regression model in midstream (peri-urban region) and downstream (urban region) were significantly higher than that in upstream (rural region), and exhibit close relationships with MPs concentration and water velocity. Furthermore, our source tracking results demonstrated that the microbiome, ARGs and VFs in urban region MPs were largely derived from rural region MPs. Our results caution us that special attention should be paid to the risks posed by MPs in urban water bodies, and highlight the threat of MPs from rural upstream areas.


Assuntos
Microbiota , Microplásticos , Antibacterianos , Genes Bacterianos , Plásticos , Fatores de Virulência , Água
10.
Environ Pollut ; 312: 120093, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36064060

RESUMO

Mulch film (MF) residues is an important source of microplastics (MPs) in farmland, but its transportation risk to the wider environment was still unknown. Some researches have pursued the sources of MPs found in exorheic rivers. Even so, a systematic study depicting the occurrence, source and fate of microplastics derived from mulch films (MPMF), the crucial component of MPs in farmlands, in exorheic rivers still lacking. Here, the combination of UV-Vis Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) was used to identify the full-size MPMF (1-5000 µm) in field sediment samples collected by single-diagonal systematic sampling. This study verified that MPMF, a polyethylene-matrix composite doped with additives, contributed a considerable part of MPs detected in upstream farmland soil and riverine sediments, and even had an abundance of 38 ± 11 items/kg to 82 ± 15 items/kg, accounting for 9.0%-13.7% of the total MPs in estuary sediments. Notably, upstream farmland was identified to the main source of the riverine MPMF by partial least square path modeling (PLS-PM), contributing to 94.7% of MPMF in riverside sediments and 85.0% of MPMF in estuary sediments. Our study first demonstrates that MPMF constitutes a non-negligible component of MPs in estuarine sediments and underlines the urgency of strengthening the management of MPs pollution in drainage areas with a high agricultural intensity.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Plásticos , Polietileno/análise , Solo , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 426: 128138, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968848

RESUMO

Capturing microplastics (MPs) were one of the important characteristics for terrestrial plant. Whereas, role of mangrove leaves in capturing MPs from tidal water and air were still largely unexplored. Here, we detected the spatial distribution of MPs at both submerged (0.10-0.49 n/cm2) and non-submerged mangrove leaves (0.09-0.24 n/cm2) in the Beibu Gulf. Abundance of MPs on submerged mangrove leaves was significantly higher than that on non-submerged mangrove leaves in landward and middle zone (*p < 0.05). Almost no difference existed in the abundances of MPs detected on leaves of different mangrove species. Abundance of MPs on submerged mangrove leaves increased following the sequences of seaward zone (0.11 n/cm2) < middle zone (0.21 n/cm2) < landward zone (0.36 n/cm2). PE MPs with uncoloured/fiber characteristics dominated the MPs both on the non-submerged and submerged mangrove leaves. Furthermore, contribution of tidal water was significantly greater than that of atmospheric deposition on MPs retention on submerged mangrove leaves. Results of this work highlight the importance of tidal water and air in the spatial distribution of MPs at mangrove leaves, and the globally MPs gross reserves at mangrove leaves cannot be ignored in evaluating the MPs sink in mangrove wetland.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Folhas de Planta/química , Plásticos , Água , Poluentes Químicos da Água/análise
12.
J Biomed Mater Res B Appl Biomater ; 110(7): 1523-1534, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226794

RESUMO

Milling and selective laser melting (SLM) technology have become new options for removable partial denture (RPD) processing. However, whether milling and SLM technology has an impact on the properties of RPD remains unclear, which is also the aim of our study. To investigate the effects of milling and SLM technology on pure titanium, mechanical property, corrosion resistance, and anti-adherence of specimens were evaluated, and specimens processed by lost-wax casting were used as control. Compared with casting and milling groups, the SLM group showed enhanced Vickers hardness (402.1 ± 13.0 HV), tensile stress (694.4 ± 4.5 MPa), and larger electrochemical capacitance arc radius compared with casting and milling groups. A series of adhesion-related genes (Als1, Als3, and HWP1) of Candida albicans cultured on SLM specimens were upregulated for more than two times that of casting and milling groups. However, images from scanning electron microscopy and confocal laser scanning microscopy exhibited similar biofilm morphology and biomass of C. albicans on a titanium disk processed by casting, milling, and SLM. Dwindled water contact angle (64.7 ± 0.6°) and higher TiO2 constituents (40.82%) in the SLM group might lead to the incompatibility of genetic expression and biofilm generation. Our findings indicated that SLM is an ideal process to produce titanium dentures, providing a reference on the selection of processing technology for dentists.


Assuntos
Prótese Parcial Removível , Titânio , Ligas de Cromo , Corrosão , Congelamento , Lasers , Teste de Materiais , Propriedades de Superfície , Titânio/química
13.
J Biomater Sci Polym Ed ; 33(14): 1845-1865, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35757914

RESUMO

Polyaryletherketone (PAEK) has good biocompatibility and mechanical properties and thus may have great potential in the fields of reparative medicine and bone intervention. In this study, the key representative PAEKs, polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), were modified by UV grafting with sodium polystyrene sulfonate (polyNaSS) to improve their biocompatibility. Toluidine blue staining and Fourier transform infrared spectroscopic analyses showed that sulfonic acid groups were successfully introduced into PAEK, and the hydrophilicity and protein adsorption capacity of the materials were enhanced in a concentration-dependent manner. The effects of the grafted polyNaSS on osteoinduction and antibacterial properties of PAEK were analyzed in detail. We found that polyNaSS enhanced the viability, alkaline phosphatase activity, calcium mineral deposition, and levels of expression of osteoblast-related genes and proteins of adherent human umbilical cord Wharton's jelly-derived mesenchymal stem cells. In addition, when Escherichia coli, Staphylococcus aureus and Porphyromonas gingivalis were incubated with the materials, bacterial colony counting revealed that grafting of polyNaSS onto PAEK led to more potent inhibition of bacterial adhesion, and polyNaSS-grafted PEKK had stronger antibacterial performance than did polyNaSS-grafted PEEK fabricated under the same grafting conditions. These data show that polyNaSS-grafted PAEK, and particularly polyNaSS-grafted PEKK, may be useful as orthopedic and dental implant materials.


Assuntos
Fosfatase Alcalina , Implantes Dentários , Fosfatase Alcalina/metabolismo , Antibacterianos/farmacologia , Benzofenonas , Cálcio , Humanos , Cetonas/química , Cetonas/farmacologia , Osteogênese , Polietilenoglicóis/química , Polímeros , Poliestirenos , Ácidos Sulfônicos , Propriedades de Superfície , Cloreto de Tolônio/farmacologia
14.
Chemosphere ; 307(Pt 4): 136137, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36007748

RESUMO

Microplastics (MPs) in ocean tides can be effectively intercepted by mangroves, especially sediments, which are considered to be effective sinks. However, the retention of plantation mangrove forests on MPs is still unclear. In this study, the spatial distribution and its implication factors of MPs in surface sediments of plantation mangrove forests were investigated for the first time. In plantation forests, MPs were detected with abundances ranging from 67 ± 21 to 203 ± 25 items/kg, and plantation forests were significantly lower than natural forests at the CJ sampling site (p < 0.05). Plantation forests had fewer fibrous MPs than natural forests (p < 0.05). Furthermore, the MPs abundance showed strong linear relationships with the sand content (p = 0.002, R2 = 0.86) and Aegiceras corniculata biomass (p = 0.001, R2 = 0.84). Partial least squares path modeling analysis (PLS-PM) indicated that these two factors influenced MPs abundance by retaining MPs with fibrous, fragmented, denser and larger-sized characteristics. Our results revealed the differences in MPs abundance and characteristics between plantation and natural mangrove forests, and it is necessary to monitor MPs pollution to provide significant guidance for the restoration of constructed wetlands.


Assuntos
Microplásticos , Áreas Alagadas , Ecossistema , Monitoramento Ambiental , Florestas , Sedimentos Geológicos , Plásticos , Areia
15.
Front Microbiol ; 11: 596459, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343538

RESUMO

As one of the main pathogens of periodontitis, Porphyromonas gingivalis often forms mixed biofilms with other bacteria or fungi under the gingiva, such as Candida albicans. Heme is an important iron source for P. gingivalis and C. albicans that supports their growth in the host. From the perspective of heme competition, this study aims to clarify that the competition for heme enhances the pathogenic potential of P. gingivalis during the interaction between P. gingivalis and C. albicans. Porphyromonas gingivalis single-species biofilm and P. gingivalis-C. albicans dual-species biofilm were established in a low- and high-heme environment. The results showed that the vitality of P. gingivalis was increased in the dual-species biofilm under the condition of low heme, and the same trend was observed under a laser confocal microscope. Furthermore, the morphological changes in P. gingivalis were observed by electron microscope, and the resistance of P. gingivalis in dual-species biofilm was stronger against the killing effect of healthy human serum and antibiotics. The ability of P. gingivalis to agglutinate erythrocyte was also enhanced in dual-species biofilm. These changes disappeared when heme was sufficient, which confirmed that heme competition was the cause of thepathogenicy change in P. gingivalis. Gene level analysis showed that P. gingivalis was in a superior position in the competition relationship by increasing the expression of heme utilization-related genes, such as HmuY, HmuR, HusA, and Tlr. In addition, the expression of genes encoding gingipains (Kgp, RgpA/B) was also significantly increased. They not only participate in the process of utilizing heme, but also are important components of the virulence factors of P. gingivalis. In conclusion, our results indicated that the pathogenic potential of P. gingivalis was enhanced by C. albicans through heme competition, which ultimately promoted the occurrence and development of periodontitis and, therefore, C. albicans subgingival colonization should be considered as a factor in assessing the risk of periodontitis.

16.
Spine (Phila Pa 1976) ; 43(6): E341-E347, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28678108

RESUMO

STUDY DESIGN: Biomechanical investigation using cadaver spines. OBJECTIVE: The aim of the present study was to assess the magnitude of the deflation effect after balloon kyphoplasty (BKP) or use of minimally invasive vertebral body stent (MIVBS) in in vitro biomechanical condition. SUMMARY OF BACKGROUND DATA: BKP is a well-established minimally invasive treatment option for osteoporotic vertebral compression fractures. However, this technique can lead to a secondary height loss-known as the "deflation effect"-causing intrasegmental kyphosis and an overall alignment failure. METHODS: The study was conducted on 24 human cadaveric vertebral bodies (T12-L5). After creating a compression fracture model, the fractured vertebral bodies were reduced by BKP (n = 12) or by MIVBS (n = 12) and then augmented with polymethyl methacrylate bone cement. Each step of the procedure was performed under fluoroscopic guidance and the results were analyzed quantitatively. Finally, the strength and stiffness of augmented vertebral bodies were measured by biomechanical tests. RESULTS: Complete initial reduction of the fractured vertebral body height was achieved by both systems. Secondary loss of reduction after balloon deflation was significantly greater in the BKP group (2.36 ±â€Š0.63 mm vs. 0.34 ±â€Š0.43 mm in the MIVBS group; P < 0.05). Height gain was significantly higher in the MIVBS group (77.68% ±â€Š11.46% vs. 34.87% ±â€Š13.16% in the BKP group; P < 0.05). Increase in the kyphotic angle gain (relative to the preoperative kyphotic angle) was significantly more in the MIVBS group (95.60% ±â€Š6.12% vs. 77.0% ±â€Š4.94% in the BKP group; P < 0.05). Failure load was significantly higher in the MIVBS group (189% ±â€Š16% vs. 146% ±â€Š14%; P < 0.05). However, stiffness was not significantly different between the two groups. CONCLUSION: The deflation effect after BKP can be significantly decreased with the use of the MIVBS technique. LEVEL OF EVIDENCE: N/A.


Assuntos
Cimentos Ósseos/uso terapêutico , Fraturas por Compressão/cirurgia , Cifoplastia , Fraturas da Coluna Vertebral/cirurgia , Cadáver , Fluoroscopia/efeitos adversos , Humanos , Cifoplastia/métodos , Vértebras Lombares/cirurgia , Vértebras Torácicas/cirurgia
17.
Clin Spine Surg ; 29(2): 78-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26889991

RESUMO

STUDY DESIGN: The biomechanics of pedicle screw fixation combined with trajectory cement augmentation with various filling volumes were measured by pull-out, periodic antibending, and compression fatigue tests. OBJECTIVE: To investigate the biomechanical properties of the pedicle screw fixation combined with trajectory bone cement (polymethylmethacrylate) augmentation in osteoporotic vertebrae and to explore the optimum filling volume of the bone cement. SUMMARY OF BACKGROUND DATA: Pedicle screw fixation is considered to be the most effective posterior fixation method. The decrease of the bone mineral density apparently increases the fixation failure risk caused by screw loosening and displacement. Trajectory bone cement augmentation has been confirmed to be an effective method to increase the bone intensity and could markedly increase the stability of the fixation interface. METHODS: Sixteen elderly cadaveric 1-5 lumbar vertebral specimens were diagnosed with osteoporosis. The left and right vertebral pedicles were alternatively randomized for treatment in all groups, with the contralateral pedicles as control. The study groups included: group A (pedicle screw fixation with full trajectory bone cement augmentation), group B (75% filling), group C (50% filling), and group D (25% filling). Finally, the bone cement leakage and dispersion were assessed and the mechanical testing was conducted. RESULTS: The bone cement was well dispersed around the pedicle screw. The augmented bone intensity, pull-out strength, periodic loading times, and compression fatigue performance were markedly higher than those of the control groups. With the increase in trajectory bone cement, the leakage was also increased (P<0.05). The pull-out strength of the pedicle screw was increased with an increase in bone mineral density and trajectory bone cement. It peaked at 75% filling, with the largest power consumption. CONCLUSIONS: The optimal filling volume of the bone cement was 75% of the trajectory volume (about 1.03 mL). The use of excessive bone cement did not increase the fixation intensity but increased the risk of leakage.


Assuntos
Cimentos Ósseos/farmacologia , Fixação de Fratura , Vértebras Lombares/cirurgia , Osteoporose/fisiopatologia , Osteoporose/cirurgia , Parafusos Pediculares , Idoso , Fenômenos Biomecânicos/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Feminino , Humanos , Vértebras Lombares/efeitos dos fármacos , Masculino
18.
J Nanosci Nanotechnol ; 5(4): 653-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16004134

RESUMO

We reported polyacrylamide gel immobilized molecular beacon array for single nucleotide mismatch detection in this paper. Molecular beacons are oligonucleotide probes fluorescing upon hybridization to their complementary DNA/RNA targets with excellent sensitivity and high selectivity. The specially designed molecular beacon for immobilization contains a 15 base loop sequence with a 5 base pair stem, a polyT (20 bases) spacer, a 5'-end amino group for immobilization, a fluorescein in the middle of the sequence as the fluorophore, and a 3'-end DABCYL as the quencher. Between the 5'-end amino group and the stem, the polyT is used to minimize disability caused by 5'-end immobilization. The molecular beacon microarray was fabricated by a pin-based spotting robot and the hybridization was investigated by confocal microscope. A real-time hybridization process at room temperature was registered every minute for 20 min after the target solution was pumped into the hybridization cell. The result indicates that a polyacrylamide film coated glass slide provides an ideal solution-like environment for molecular beacon probes. The potential applications of this kind of molecular beacon array are mutation detection, disease mechanisms, disease diagnostics, etc. in a parallel, cost saving, and label-free detection way.


Assuntos
Resinas Acrílicas/química , Pareamento Incorreto de Bases , Técnicas Genéticas , Nanotecnologia/métodos , Resinas Acrílicas/metabolismo , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Cinética , Microscopia de Força Atômica , Microscopia Confocal , Mutação , Desnaturação de Ácido Nucleico , Hibridização de Ácido Nucleico , Nucleotídeos/química , Sondas de Oligonucleotídeos/química , Politetrafluoretileno/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA