Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Environ Sci (China) ; 57: 93-103, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28647270

RESUMO

The total concentrations and component profiles of polycyclic aromatic hydrocarbons (PAHs) in ambient air, surface soil and wheat grain collected from wheat fields near a large steel-smelting manufacturer in Northern China were determined. Based on the specific isomeric ratios of paired species in ambient air, principle component analysis and multivariate linear regression, the main emission source of local PAHs was identified as a mixture of industrial and domestic coal combustion, biomass burning and traffic exhaust. The total organic carbon (TOC) fraction was considerably correlated with the total and individual PAH concentrations in surface soil. The total concentrations of PAHs in wheat grain were relatively low, with dominant low molecular weight constituents, and the compositional profile was more similar to that in ambient air than in topsoil. Combined with more significant results from partial correlation and linear regression models, the contribution from air PAHs to grain PAHs may be greater than that from soil PAHs.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , China , Modelos Lineares , Metalurgia , Análise de Componente Principal , Solo/química , Aço , Triticum/química
2.
J Mater Chem B ; 12(12): 3031-3046, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411199

RESUMO

Carbon fiber-reinforced polyether ether ketone (CFRPEEK) implants have attracted widespread attention in the field of clinical bone defect repair. However, the surface bioinertness confines the application of CFRPEEK implants. Inspired by the study of rosmarinic acid (RA)-promoted osteogenic differentiation, a self-assembly surface modification method based on electrostatic interactions, involving deposition of sodium carboxymethyl cellulose/chitosan and rosmarinic acid layer by layer on the surface of poly-L-lysine modified hydroxy CFRPEEK (SCPP/CC5@RA), is proposed to introduce RA on the surface of CFRPEEK for bioactivation. After layer-by-layer self-assembly (LBL), the surface of SCPP/CC5@RA exhibits weak electrophoresis (11.43 eV), suitable hydrophilicity, and bioactivity. The results of in vitro studies indicate that the RA release behavior of SCPP/CC5@RA effectively regulates the immune-inflammatory response and promotes the differentiation of osteoblasts. The rapid release of RA (0.17 µg mL-1) in the initial stage can downregulate the secretion of inflammation-related cytokines and significantly reduce oxidative stress levels; the sustained release of RA (0.06 µg mL-1) in the late stage can upregulate the expression of osteogenesis-related genes and induce mineralization of osteoblasts. Moreover, the rabbit tibia defect model demonstrates that the LBL technique can enhance the osseointegration of CFRPEEK implants. Compared with the control group, the bone trabecular thickness of the SCPP/CC5@RA group increases by 1.36 times, and the maximum pushing force increases by 2.67 times. In summary, this study provides a promising LBL based RA delivery system for the development of a dual-functional CFRPEEK implant in the field of bone implant biomaterials.


Assuntos
Benzofenonas , Osseointegração , Osteogênese , Polímeros , Animais , Coelhos , Fibra de Carbono , Polietilenoglicóis/farmacologia , Cetonas/farmacologia , Anti-Inflamatórios/farmacologia
3.
Int J Biol Macromol ; 235: 123830, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36842743

RESUMO

Protection coatings with self-healing ability can significantly enhance their anti-corrosion properties and service life. In this study, self-healing waterborne polyurethane (WPU) coatings with high transparence and haze were facile fabricated via cellulose nanocrystal (CNC) stabilized linseed oil (LO) Pickering emulsion. Sustainable CNCs displayed outstanding emulsifying ability and stability to stabilize LO Pickering emulsion. The size of LO Pickering emulsion droplets decreases with the CNC concentration, while the emulsion fraction and surface coverage by CNCs increase with CNC concentration, leading to a more stable Pickering emulsion. The self-healing rates of WPU coatings at varied time, temperature, CNC and catalyst concentration were investigated. Higher temperature, larger emulsion droplets, and with driers employed as catalysts generally lead to faster self-healing rate. The WPU self-healing coatings displayed much better abrasion resistance and mechanical properties than pristine WPU due to the incorporation of CNCs. Moreover, the WPU self-healing coatings show a high transparence and haze due to light scattering, and their applications as coatings of lamp covers and glass to achieve uniform light distribution and privacy protection with high light transmission were further demonstrated.


Assuntos
Celulose , Nanopartículas , Celulose/química , Óleo de Semente do Linho , Poliuretanos , Emulsões/química , Nanopartículas/química
4.
ACS Appl Mater Interfaces ; 15(26): 31256-31272, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37349937

RESUMO

Current treatments of carbon fiber-reinforced polyetheretherketone (CFRPEEK) as orthopedic implants remain unsatisfactory due to the bioinert surface. The multifunctionalization of CFRPEEK, which endows it with regulating the immune inflammatory response, promoting angiogenesis, and accelerating osseointegration, is critical to the intricate bone healing process. Herein, a multifunctional zinc ion sustained-release biocoating, consisting of a carboxylated graphene oxide, zinc ion, and chitosan layer, covalently grafts on the surface of amino CFRPEEK (CP/GC@Zn/CS) to coordinate with the osseointegration process. The release behavior of zinc ions theoretically conforms to the different demands in the three stages of osseointegration, including the burst release of zinc ions in the early stage (7.27 µM, immunomodulation), continuous release in the middle stage (11.02 µM, angiogenesis), and slow release in the late stage (13.82 µM, osseointegration). In vitro assessments indicate that the multifunctional zinc ion sustained-release biocoating can remarkably regulate the immune inflammatory response, decrease the oxidative stress level, and promote angiogenesis and osteogenic differentiation. The rabbit tibial bone defect model further confirms that, compared to the unmodified group, the bone trabecular thickness of the CP/GC@Zn/CS group increases 1.32-fold, and the maximum push-out force improves 2.05-fold. In this study, a multifunctional zinc ion sustained-release biocoating constructed on the surface of CFRPEEK that conforms to the requirements of different osseointegration stages can be an attractive strategy for the clinical application of inert implants.


Assuntos
Osteogênese , Zinco , Animais , Coelhos , Fibra de Carbono , Zinco/farmacologia , Preparações de Ação Retardada/farmacologia , Polietilenoglicóis/farmacologia , Cetonas/farmacologia , Osseointegração , Anti-Inflamatórios/farmacologia , Íons/farmacologia , Propriedades de Superfície
5.
Int J Biol Macromol ; 253(Pt 5): 127263, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802443

RESUMO

Antibacterial biodegradable plastics are highly demanded for food package and disposable medical plastic consumables. Incorporating antibacterial nanoagents into polymer matrices is an effective method to endow polymers with antibacterial activity. However, synthesis of sustainable antibacterial nanoagents with high antibacterial activity via facile approach and well dispersion of them in polymer matrices are still challenging. In this study, polyethyleneimine (PEI) was grafted on surface of cellulose nanocrystals (CNCs) via the oxidation self-polymerization of dopamine (DA) and the Michael addition/Schiff base reaction between DA and PEI. The resulted PEI and polydopamine modified CNCs (PPCs) showed substantially enhanced antibacterial activity and reduced cytotoxicity for NIH3T3 than PEI due to increased local concentration and anchoring of PEI. The minimum concentration of PPCs to achieve antibacterial rate of 99.99 % against S. aureus and E. coli were about 50 and 20 µg/mL, respectively. PPCs displayed outstanding emulsifying ability, and PPC coated polylactic acid (PLA) microspheres were obtained by drying PPC stabilized PLA Pickering emulsion, leading to a well dispersion of PPCs in PLA. PPC/PLA film prepared by hot-pressing displayed great antibacterial performance and enhanced mechanical properties. Therefore, this study proposed a facile approach to fabricate biocompatible antibacterial nanoagents and plastics.


Assuntos
Nanopartículas , Polietilenoimina , Animais , Camundongos , Emulsões/química , Escherichia coli , Staphylococcus aureus , Células NIH 3T3 , Polímeros , Celulose/química , Poliésteres/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química
6.
Biomacromolecules ; 13(9): 2723-30, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22913876

RESUMO

RNA interference is one of the most promising technologies for cancer therapeutics, while the development of a safe and effective small interfering RNA (siRNA) delivery system is still challenging. Here, amphipol polymer and protamine peptide were employed to modify magnetic nanoparticles to form cell-penetrating magnetic nanoparticles (CPMNs). The unique CPMN could efficiently deliver the eGFP siRNA intracellularly and silence the eGFP expression in cancer cells, which was verified by fluorescent imaging of cancer cells. Compared with lipofectamine and polyethyleneimine (PEI), CPMNs showed superior silencing efficiency and biocompatibility with minimum siRNA concentration as 5 nm in serum-containing medium. CPMN was proved to be an efficient siRNA delivery system, which will have great potential in applications as a universal transmembrane carrier for intracellular gene delivery and simultaneous MRI imaging.


Assuntos
Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/antagonistas & inibidores , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Meios de Cultura , Óxido Ferroso-Férrico/química , Terapia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lipídeos/química , Imageamento por Ressonância Magnética , Polietilenoimina/química , Polímeros/química , Polímeros/metabolismo , Propilaminas/química , Propilaminas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
7.
ACS Biomater Sci Eng ; 8(6): 2375-2389, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35652599

RESUMO

Ideal bone implant materials need to provide multiple functions such as biocompatibility, non-cytotoxicity, and bone tissue regeneration guidance. To tackle this challenge, according to our previous work, carbon fiber (40 mm)-reinforced polyetheretherketone (CFPEEK) composites were developed by using 3D needle-punched CFPEEK preform molding technology. Because of the excellent mechanical properties, the CFPEEK needled felt matrix composites have a broad application prospect in orthopedic internal fixation and implant materials. In order to expand the application range of composite materials, it is very necessary to improve the surface bioactivity of composite materials. The surface modification of CFPEEK with 2D titanium carbide (MXene) nanosheets (sulfonated CFPEEK (SCFPEEK)-polydopamine (PDA)-Ti3C2Tx) for enhanced photothermal antibacterial activity and osteogenicity was explored in this study. Here, the new composites we constructed are composed of Ti3C2Tx nanosheets, PDA, and biologically inert SCFPEEK, which gave the bio-inert composites bimodal therapeutic features: photothermal antibacterial activity and in vivo osseointegration. To our knowledge, this is the first time that a CFPEEK implant with a bioactive surface modified by Ti3C2Tx nanosheets was demonstrated. Due to the synergistic photothermal therapy (PTT) treatment of Ti3C2Tx/PDA, SCFPEEK-PDA-Ti3C2Tx (SCP-PDA-Ti) absorbed heat and the temperature increased to 40.8-59.6 °C─the high temperature led to bacterial apoptosis. The SCP-PDA-Ti materials could effectively kill bacteria after 10 min of near-infrared (NIR) irradiation at 808 nm. SCP-PDA-Ti (2.5) and SCP-PDA-Ti (3.0) achieved a 100% bacteriostasis rate. More importantly, the multifunctional implant SCP-PDA-Ti shows good cytocompatibility and an excellent ability to promote bone formation in terms of cytotoxicity, diffusion, alkaline phosphatase activity, alizarin red activity, real-time polymerase chain reaction analysis, and in vivo bone defect osteogenesis experiments. This provides a more extendable development idea for the application of carbon fiber-reinforced composites as orthopedic implants.


Assuntos
Benzofenonas , Osteogênese , Antibacterianos/farmacologia , Benzofenonas/farmacologia , Fibra de Carbono , Cetonas/farmacologia , Polietilenoglicóis/farmacologia , Polímeros
8.
J Mater Chem B ; 10(28): 5473-5486, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35792102

RESUMO

Long carbon fiber reinforced polyetheretherketone (LCFRPEEK), a newly developed high-performance composite material, is being investigated as a possible orthopedic implant. However, its inability of angiogenesis and osseointegration after implantation makes it difficult for use as a long-term osteogenic fixation implant, which limits its scope of clinical application. Therefore, we design and construct a multifunctional 3D sponge-like macroporous cryogel to modify sulfonated LCFRPEEK using a cryogelation method based on free radical photopolymerization. The cryogel is mainly composed of graphene oxide-hydroxyapatite (GO-HAP) nanocomposites and gelatin methacrylate/polyethylene glycol diacrylate (GelMA/PEGDA). The results reveal that the multifunctional LCFRPEEK implant shows excellent biocompatibility and osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) due to the incorporation of HAP nanoparticles into GO-HAP nanocomposites. Systematic in vivo animal studies further confirm that the multifunctional surface improves the bone remodeling and osseointegration of the LCFRPEEK implant. Additionally, the characteristic 3D sponge-like macroporous structures of cryogels promote the ingrowth and migration of human umbilical vein endothelial cells (HUVECs) and GO in the GO-HAP also boosts HUVEC migration and tube formation showing that they are beneficial for vascularization during osteogenesis. Therefore, the developed 3D sponge-like macroporous GelMA/PEGDA/GO-HAP cryogel fabricated on sulfonated LCFRPEEK implants with enhanced angiogenesis and osseointegration capabilities has great potential for clinical use as an orthopedic implant material.


Assuntos
Criogéis , Osseointegração , Animais , Benzofenonas , Fibra de Carbono , Proliferação de Células , Criogéis/química , Células Endoteliais , Humanos , Cetonas/química , Osteogênese , Polietilenoglicóis/química , Polímeros , Ratos
9.
Langmuir ; 27(11): 7207-12, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21539320

RESUMO

A one-pot colloidal reaction strategy was developed to synthesize asymmetric magnetic composite particles (AMCPs) with high anisotropy and magnetic content. The asymmetricity was established by having two portions of the particle composed of both polystyrene and silica, among which the latter was conjugated with magnetite nanoparticles. Phase separation was found to be critical in developing the asymmetric structure between the inorganic and polymer components during miniemulsion polymerization and the sol-gel reaction. Morphological control of the magnetic composite particles was achieved in a straightforward fashion by adjusting the processing parameters. These asymmetric nanomaterials with superparamagnetic and amphiphilic properties will have significant potential in biomedical applications.


Assuntos
Magnetismo , Nanopartículas/química , Anisotropia , Óxido Ferroso-Férrico/química , Poliestirenos/química , Dióxido de Silício/química , Temperatura
10.
Mater Sci Eng C Mater Biol Appl ; 130: 112451, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702530

RESUMO

Long carbon fiber reinforced polyether ether ketone (LCFRPEEK) is fabricated using a three-dimensional (3D) needle-punched method in our previous work, which is considered as a potential orthopedic implant due to its high mechanical strength and isotropic properties, as well as having an elastic modulus similar to human cortical bone. However, the LCFRPEEK has inferior integration with bone tissue, limiting its clinical application. Thus, a facile surface modification method, using gelatin methacrylate/polyacrylamide composite hydrogel coating (GelMA/PAAM) loading with dexamethasone (Dex) on our newly-developed LCFRPEEK composite via concentrated sulfuric acid sulfonating and ultraviolet (UV) irradiation grafting methods, has been developed to tackle the problem. The results demonstrate that the GelMA/PAAM/Dex coating modified sulfonated LCFRPEEK (SCP/GP/Dex) has a hydrophilicity surface, a long-term Dex release capability and forms more bone-like apatite nodules in SBF. The SCP/GP/Dex also displays enhanced cytocompatibility and osteogenic differentiation in terms of rat bone marrow mesenchymal stem cells (rBMSCs) responses in vitro assay. The in vivo rat cranial defect assay confirms that SCP/GP/Dex boosts bone regeneration/osseointegration, which significantly improves osteogenic fixation between the implant and bone tissue. Therefore, the newly-developed LCFRPEEK modified via GelMA/PAAM/Dex bioactive coating exhibits improved biocompatibility and osteogenic integration capability, which has the basis for an orthopedic implant for clinical application.


Assuntos
Hidrogéis , Osteogênese , Animais , Fibra de Carbono , Proliferação de Células , Éteres , Cetonas/farmacologia , Ratos
11.
J Mater Chem B ; 9(36): 7492-7505, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551047

RESUMO

A resveratrol-loaded bi-layered scaffold (RBS) that consists of a resveratrol-loaded poly(lactic-co-glycolic acid) (Res-PLGA) electrospinning nanofiber mat (upper layer) and an alginate di-aldehyde (ADA)-gelatin (GEL) crosslinking hydrogel (ADA-GEL) (lower layer) was fabricated as a wound dressing material. It was made through mimicking the epidermis and dermis of the skin. The RBS exhibited good hemostatic ability and proper swelling ability. Furthermore, HaCaT cells and human embryonic skin fibroblasts (ESFs) were also cultured in the nanofiber layer and hydrogel layer of RBS, and the results indicated that both HaCaT and ESFs could grow well in the materials. The in vivo experiment using a Sprague-Dawley (SD) rat skin wound as a model showed that the RBS could accelerate the wound healing rate compared with the Res-PLGA group and ADA4-GEL6 group. These results indicated that this resveratrol-loaded bi-layered scaffold can be a potential candidate in promoting wound healing.


Assuntos
Alginatos/química , Gelatina/química , Hidrogéis/química , Nanofibras/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Ratos , Ratos Sprague-Dawley , Resveratrol/química , Resveratrol/metabolismo , Resveratrol/farmacologia , Reologia , Pele/lesões , Pele/patologia , Cicatrização/efeitos dos fármacos
12.
J Biomater Sci Polym Ed ; 30(5): 355-375, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30572791

RESUMO

Microparticles (MPs) exhibit fast dissolution, characterized by a burst drug release pattern. In the present work, we prepared core-shell MPs of simvastatin (SIM) and zein with chitosan (CS) and nano-hydroxyapatite (nHA) as a drug carrier using the coaxial electrospray deposition method. The morphology, formation and in vitro osteogenic differentiation of these MPs were studied. The synthetic MPs have a diameter of about 1 µm and they are composed of non-toxic natural materials. They provide an effective way to enable long-term sustained-release activity, which is controlled by their double layer structures. The CS-nHA/zein-SIM MPs presented a low initial burst release (approximately 35-47%) within the first 24 h of application followed by the sustained release for at least 4 weeks. In vitro cell culture experiments were performed and the results revealed that the CS-nHA/zein-SIM core-shell MPs were beneficial to the adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The CS-nHA/zein-SIM MPs with a low SIM concentration were beneficial to cell proliferation and promotion of osteogenic differentiation.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Eletricidade , Microesferas , Osteogênese/efeitos dos fármacos , Sinvastatina/química , Sinvastatina/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Durapatita/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanoestruturas/química , Ratos , Ratos Sprague-Dawley , Zeína/química
13.
Biomater Sci ; 7(7): 2759-2768, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31011742

RESUMO

The nanomaterial-cell interface plays an important role in biodetection and therapy. Several parameters involved in the bio-nano interaction such as size, shape, surface charge, surface functionality and protein corona on the nanomaterials have been studied. Recently, we found that the surface charge of the cancer cell membrane derived from the glycolysis could be a general hallmark for cancer cell targeting and very efficient isolation by tailored nanoparticles. However, to simultaneously achieve high capture efficiency and optimal cell viability, the influence of critical features of nanomaterials, such as surface charge and geometry, must be explored. In this study, we designed and synthesized spherical core-shell magnetic particles and Fe3O4 particle coated graphene oxide nanosheets with a similar surface chemistry, charge and magnetization, but different geometries. Although the two-dimensional (2D) graphene oxide based nanocomposites possessed higher capture efficiency at a low working concentration as compared to the spherical nanocomposites, they also exhibited more obvious cytotoxicity. Different aspects of the mechanism underlying the higher cytotoxicity from the 2D nanomaterials were investigated. The results of this study can guide the design of versatile candidates for the isolation of cancer cells.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nanocompostos , Sobrevivência Celular/efeitos dos fármacos , Óxido Ferroso-Férrico/química , Grafite/química , Células HeLa , Humanos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Óxidos/química , Polietilenoimina/química , Propriedades de Superfície
14.
Mater Sci Eng C Mater Biol Appl ; 64: 87-92, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27127031

RESUMO

Anisotropic yolk/shell or Janus inorganic/polystyrene nanocomposites were prepared by combining miniemulsion polymerization and sol-gel reaction. The morphologies of the anisotropic composites were found to be greatly influenced by surface modification of zinc oxide (ZnO) nanoparticle seeds. Two different types of the oleic acid modified ZnO nanoparticles (OA-ZnO) were prepared by post-treatment of commercial ZnO powder and homemade OA-ZnO nanoparticles. The morphologies and properties of the nanocomposites were investigated by transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and energy dispersive X-ray spectroscopy (EDX). It was found that both post-treated OA-ZnO and in-situ prepared OA-ZnO nanoparticles resulted in the yolk-shell and Janus structure nanocomposites, but with varied size and morphology. These nanocomposites showed stable and strong fluorescence by introducing quantum dots as the co-seeds. The fluorescent anisotropic nanocomposites were decorated separately with surface carboxyl and hydroxyl groups. These composites with unique anisotropic properties will have high potential in biomedical applications, particularly in bio-detection.


Assuntos
Nanocompostos/química , Nanopartículas/química , Poliestirenos/química , Óxido de Zinco/química , Anisotropia , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Propriedades de Superfície
15.
Huan Jing Ke Xue ; 37(2): 740-9, 2016 Feb 15.
Artigo em Zh | MEDLINE | ID: mdl-27363168

RESUMO

In this study, paired surface soil and mature wheat grain samples were collected in the cornfields near the large Handan Steel Manufacturer; and the total concentrations and compositional profiles of the parent PAHs were measured, then the spatial distribution characteristics and correlation with total organic carbon fractions in soil were determined. Accordingly, a preliminary source identification was performed, and the association between PAHs in surface soil and wheat grain was briefly discussed. The median concentration of total PAHs in surface soils from the cornfields of Handan was 398.9 ng x g(-1) (ranged from 123.4 ng x g(-1) to 1626.4 ng x g(-1), where around 18% and 10% of all the studied soil samples were over the corresponding quality criteria for total PAHs and B [a] P in soils, respectively. The MMW and HMW species were the main components in the compositional profiles of surface soils. Based on the specific isomeric ratios of PAHs species, coal/biomass combustion and transportation fuel (tail gas) were the dominant mixed sources for the local PAHs emission. The fractions of surface soil TOC had significant positive correlations with the total PAHs and also with the individual components with different rings. In addition, the median concentration of total PAHs in wheat grains collected in the cornfields near the Handan Steel Manufacture was 27.0 ng x g(-1) (ranged from 19.0-34.0 ng x g(-1)). The levels in wheat grains were not high, and lower than the related hygienic standards of food proposed by EU and China. The LMW and MMW PAHs with 2 to 4 rings occupied a larger proportion, more than 84% of the total PAHs, which was largely different from the component profiles in surface soils. This situation suggested that the local sources of PAHs in wheat grains may originate not only from surface soil via root absorption and internal transportation, but also from ambient air through dry and wet deposition on the leaf surface (stoma).


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/química , Triticum/química , Biomassa , China , Carvão Mineral , Metalurgia , Aço
16.
Mater Sci Eng C Mater Biol Appl ; 42: 52-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063092

RESUMO

In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.


Assuntos
Temperatura Alta , Campos Magnéticos , Nanopartículas de Magnetita/química , Resinas Acrílicas/química , Anisotropia , Teste de Materiais , Poliestirenos/química , Difração de Raios X
17.
Adv Mater ; 25(25): 3485-9, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23681969

RESUMO

Folic acid (FA) and doxorubicin (DOX) are coupled separately onto Fe3 O4 @SiO2 and polystyrene surfaces of a unique polystyrene/Fe3 O4 @SiO2 Janus structure. This super-paramagnetic, dual-functionalized Janus nanocomposite enables effective tumor cell targeting and internalization via the folate receptor, and induces significant cancer cell death by controlled, stimulus-induced drug release under acidic conditions in endosomal compartments.


Assuntos
Doxorrubicina/química , Doxorrubicina/metabolismo , Portadores de Fármacos/química , Óxido Ferroso-Férrico/química , Nanocompostos/química , Poliestirenos/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Propriedades de Superfície
18.
Chem Commun (Camb) ; 47(37): 10350-2, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21853175

RESUMO

Yolk-shell composites with an Fe(3)O(4)/silica hybrid shell and a polymer core are prepared via a facile one-pot and self-template process. Thicknesses of the inorganic shell and interior space of the composites are well controlled by tuning the ternary phase separations.


Assuntos
Técnicas de Química Sintética/métodos , Nanocompostos/química , Emulsões , Nanopartículas de Magnetita/química , Ácido Oleico/química , Polimerização , Polímeros/química , Dióxido de Silício/química
19.
Se Pu ; 20(3): 202-6, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12541936

RESUMO

Poly (methylphenylvinylsiloxane) (PMPVS) coating for solid-phase microextraction (SPME) was first prepared by using sol-gel approach and cross-linking of free radical initiation. The extraction properties of the novel coating for aromatic compounds were investigated using a self-made SPME device coupled with a gas chromatograph-flame ionization detector (GC-FID). The coating provided high surface areas and allowed high extraction efficiency. Compared with some commercial SPME stationary phases, the new phase showed better selectivity and sensitivity toward aromatic compounds. Furthermore, PMPVS coating showed good thermal stability and longer lifetime.


Assuntos
Cromatografia Gasosa/instrumentação , Polivinil/química , Siloxanas/química , Compostos de Bifenilo/análise , Cromatografia Gasosa/métodos , Reagentes de Ligações Cruzadas , Microquímica/métodos , Naftalenos/análise , Polimetil Metacrilato , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA