Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 47(1): 100-112, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33295825

RESUMO

Gastric cancer is one of the leading causes of cancer-related death worldwide with a poor prognosis. Gastric cancer is usually treated with surgery and chemotherapy, accompanied by a high rate of metastasis and recurrence. In this paper, R8 (RRRRRRRR) modified vinorelbine plus schisandrin B liposomes had been successfully constructed for treating gastric cancer. In the liposomes, R8 was used to enhance the intracellular uptake, schisandrin B was incorporated into liposomes for inhibiting tumor cells metastasis, and vinorelbine was encapsulated into liposomes as antitumor drugs. Studies were performed on BGC-823 cells in vitro and were verified in the BGC-823 cell xenografts nude mice in vivo. Results in vitro demonstrated that the targeting liposomes could induce BGC-823 cells apoptosis, inhibit the metastasis of tumor cells, and increase targeting effects to tumor cells. Meanwhile, action mechanism studies showed that the targeting liposomes could down-regulate VEGF, VE-Cad, HIF-1a, PI3K, MMP-2, and FAK to inhibit tumor metastasis. In vivo results exhibited that the targeting liposomes displayed an obvious antitumor efficacy by accumulating selectively in tumor site and induce tumor cell apoptosis. Hence, R8 modified vinorelbine plus schisandrin B liposomes might provide a safe and efficient therapy strategy for gastric cancer.


Assuntos
Lipossomos , Neoplasias Gástricas , Vinorelbina/química , Animais , Apoptose , Linhagem Celular Tumoral , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Lignanas/química , Lignanas/farmacologia , Camundongos , Camundongos Nus , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Vinorelbina/farmacologia
2.
J Gene Med ; 15(5): 205-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23636933

RESUMO

BACKGROUND: Previous studies have suggested that reducing the positive charge of melittin could increase endosomal release activity and improve branched polyethylenimine (BPEI)-mediated transfection. AR-23 is a melittin-related peptide from Rana tagoi, which shows 81% sequence identity with melittin but has less positively-charged residues than melittin. The present study aimed to investigate the mechanistic and functional aspects of the interaction of AR-23 with mammalian cells and thus improve BPEI-mediated gene transfection. METHODS: AR23 and two AR-23 analogs (AR-20 without positively-charged residues and AR-26 with the same positively-charged residues as melittin) were analyzed. Circular dichroism (CD) spectrometry was used to analyze the secondary structures of the peptides. Peptide-induced depolarization of cell membrane, the membrane-lytic activity of the peptides, and their potency with respect to enhancing the cellular uptake of calcein were evaluated. The physicochemical characters of complexes were measured and the effect of the peptides on BPEI-mediated transfection was determined. RESULTS: The CD spectra results indicated that a positive charge in AR-23 played a crucial role in maintaining the α-helical conformation, whereas an extra positive charge could not increase α-helical formation. AR-23 displayed a similar depolarization ability to melittin. However, AR-23 showed a lower membrane lytic activity under physiological conditions and a higher lytic activity at endosomal pH than melittin and AR-26, which possess more positive charges. Compared to melittin and AR-26, AR-23, with a higher endosomal escaping activity, resulted in a higher enhancement of BPEI-mediated gene transfection, as well as the maintainance of a lower cytotoxicity. CONCLUSIONS: We suggest that AR-23 may be considered as a potential enhancer for improving the transfection efficiency of cationic polymers.


Assuntos
Proteínas de Anfíbios/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Polietilenoimina/química , Proteínas/metabolismo , Transfecção/métodos , Proteínas de Anfíbios/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Dicroísmo Circular , Fluoresceínas/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Estrutura Secundária de Proteína , Proteínas/química
3.
J Gene Med ; 14(4): 241-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328546

RESUMO

BACKGROUND: Melittin is a commonly used cell-penetrating peptide (CPP) for improving branched polyethylenimine (BPEI)-mediated gene transfection. However, its application is limited owing to the cytotoxicity generated by the lytic activity at neutral pH. In the present study, we report two truncated peptides from melittin and florae with improved transfection efficiency. METHODS: Two truncated peptides consisting of 1-20 residues of melittin (MT20) and florae (FL20) were synthesized. Circular dichroism (CD) spectrometry was used to analyze the secondary structures of the peptides. The membrane-lytic activity of the peptides and their potency in enhancing cellular uptake of calcein were evaluated. The peptides and BPEI mixtures were mixed with plasmid DNA to prepare peptide/BPEI/DNA complexes. The physicochemical characters of complexes were measured and the effect of the peptides on BPEI-mediated transfection was determined. RESULTS: CD analysis and structure observation showed that the truncated peptides have α-helical conformation, which was necessary for penetrating activity. The truncated peptides exhibited several advantages than their parent peptides: (i) they showed higher hemolytic potency in acidic pH but lower lytic activity than their parent peptides in neutral pH; (ii) enhanced calcein efficiently release from both early and late endosome; (iii) they did not affect the DNA-binding affinity of BPEI and the physicochemical characteristics of BPEI/DNA complexes. Moreover, the peptides could increase BPEI-mediated transfection efficiency in different cell lines (293FT, B16F10 and CHO-K1) by simply mixing with BPEI, without causing cytotoxicity. CONCLUSIONS: The results obtained in the present study indicate that the truncated peptides with higher endosomal disrupting activity were better enhancers for increasing transfection efficiency.


Assuntos
Peptídeos Penetradores de Células/química , Endossomos/metabolismo , Meliteno/química , Polietilenoimina/química , Transfecção/métodos , Animais , Células CHO , Linhagem Celular , Dicroísmo Circular , Cricetinae , DNA/administração & dosagem , Portadores de Fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio
4.
Biomacromolecules ; 12(1): 66-74, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21126012

RESUMO

Linear reduction-degradable cationic polymers with different secondary amine densities (S2 and S3) and their nonreducible counterparts (C2 and C3) were synthesized by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) step-growth polymerization of the dialkyne-oligoamine monomers and the diazide monomers. These polymers were studied with a goal of developing a set of new gene carriers. The buffering capacity and DNA binding ability of these polymers were evaluated by acid-base titration, gel retardation, and ethidium bromide (EB) exclusion assay. The polymers with lower amine density exhibit a weaker DNA-binding ability but a stronger buffering capacity in the range of pH 5.1 and 7.4. Particle size and zeta-potential measurements demonstrate that the polymers with higher amine density condense pDNA to form polyplexes with smaller sizes, while the disulfide bond in the backbone shows a negative effect on the condensing capability of the polymers, resulting in the formation of polyplexes with large size and nearly neutral surface. The reduction-sensitive polyplexes formed by polymer S2 or S3 can be disrupted by dithiothreitol (DTT) to release free DNA, which has been proven by the combination of gel retardation, EB exclusion assay, particles sizing, and zeta potential measurements. Cell viability measurements by MTT assay demonstrate that the reduction-degradable polymers (S2 and S3) have little cytotoxicity while the nonreducible polymers (C2 and C3) show obvious cytotoxicity, in particular, at high N/P ratios. In vitro transfection efficiencies of these polymers were evaluated using EGFP and luciferase plasmids as the reporter genes. Polymers S3 and S2 show much higher efficiencies than the nonreducible polymers C3 and C2 in the absence of 10% serum; unexpectedly, the lowest transfection efficiency has been observed for polymer S3 in the presence of serum.


Assuntos
DNA/farmacologia , Técnicas de Transferência de Genes , Plasmídeos/farmacologia , Polímeros , Animais , Células COS , Chlorocebus aethiops , DNA/química , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Tamanho da Partícula , Plasmídeos/química , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia
5.
Macromol Biosci ; 11(10): 1393-406, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21830296

RESUMO

A family of thermoresponsive cationic copolymers (TCPs) that contain branched PEI 25 K as the cationic segment and poly(MEO(2)MA-co-OEGMA(475)) as the thermosensitive block (TP) is prepared. The DNA binding capability, physicochemical properties, and biological performance of the TCPs are studied. All of these TCPs can condense DNA to form polyplexes with diameters of 150-300 nm and zeta potentials of 7-32 mV at N/P ratios between 12 and 36. The length of TP block is a key factor for shielding the positive surface charge of the polyplexes and protecting them against protein adsorption. TCPs with a higher TP content have a lower cytotoxicity while the best transfection performance is achieved by the TCPs with longest TP length, reaching a level of the intact PEI 25 K in the presence of serum.


Assuntos
Técnicas de Transferência de Genes , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Ácidos Polimetacrílicos/química , Temperatura , Animais , Células COS , Cátions , Morte Celular , Sobrevivência Celular , Chlorocebus aethiops , DNA/metabolismo , Eletroforese em Gel de Ágar , Etídio/metabolismo , Luciferases/metabolismo , Espectroscopia de Ressonância Magnética , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polietilenoimina/síntese química , Polietilenoimina/química , Ácidos Polimetacrílicos/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Transfecção
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 15(6): 1266-9, 2007 Dec.
Artigo em Zh | MEDLINE | ID: mdl-18088481

RESUMO

The study was aimed to investigate the possibility of enhancing transfection efficiency of branched polyethylenimine (BPEI) in HeLa cells by hydrophobic tail of bee venom peptide (melittin). Hydrophobic tail of melittin was synthesized and its membrane permeable activity was evaluated by hemolysis test. The peptide was mixed with BPEI and the transfection efficiency was determined in HeLa cells by using green fluorescent protein gene (GFP) as a reporter gene. The cytotoxicity of the mixture was analyzed by MTT assay at 24 hours after transfection. The results indicated that the synthesized peptide had permeable activity leading to hemolysis in both neutral and acidic solution. At optimal condition, the peptide could significantly improve the transfection efficiency of BPEI and the cytotoxicity of the mixture was lower than BPEI itself. It is concluded that hydrophobic tail of melittin may be a potential enhancer to improve transfection efficiency mediated by cationic polymers in difficult to transfect cells.


Assuntos
Meliteno/química , Peptídeos/química , Polietilenoimina/farmacologia , Transfecção , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Meliteno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA