Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vasc Access ; 24(5): 972-979, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34847751

RESUMO

OBJECTIVE: To evaluate the long-term patency rate of the arteriovenous angioaccess (AVA) with interposition of either autologous or prosthetic material as a last option for vascular access in the upper extremity. METHODS: This is a retrospective chart review study of all patients who received an AVA with autologous saphenous vein (SV Group, n = 38) or prosthetic material (PTFE Group, n = 25) as a conduit from the year 1996 to 2020 in the Radboud University Medical Center (Radboudumc). Data were retrospectively extracted from two prospectively updated local databases for vascular access, one for haemodialysis (HD) and one for parenteral nutrition (PN). When required, the medical records of each patient were used. Data were eventually collected anonymously and analysed in SPSS 25. Kaplan-Meier life-tables were used for the statistical analysis. RESULTS: Primary patency at 12 and 48 months was 30% and 20% in the SV group and 45% and 14% in the PTFE group. No significant difference was shown in the median primary patency rate (p = 0.715). Secondary patency at 12 and 48 months was 63% and 39% in the SV group and 55% and 19% in the PTFE group. This was considered a significant difference in median secondary patency in favour of the SV with 41.16 ± 17.67 months against 13.77 ± 10.22 months for PTFE (p = 0.032). The incidence of infection was significantly lower in the SV group (p = 0.0002). A Kaplan-Meier curve could not detect a significant difference in secondary patency between the access for haemodialysis and the access for parenteral nutrition. The secondary patency of the SV in parenteral nutrition access, was significantly higher when compared with PTFE (p = 0.004). CONCLUSION: The SV can be preferred over PTFE when conduit material is needed for long-term vascular access for HD or PN treatment due to its higher secondary patency and lower infection risk.


Assuntos
Implante de Prótese Vascular , Humanos , Implante de Prótese Vascular/efeitos adversos , Estudos Retrospectivos , Veia Safena , Grau de Desobstrução Vascular , Diálise Renal/efeitos adversos , Politetrafluoretileno , Prótese Vascular/efeitos adversos , Resultado do Tratamento , Oclusão de Enxerto Vascular/etiologia
2.
Tissue Eng Part C Methods ; 20(5): 423-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24099067

RESUMO

A clinical demand exists for alternatives to repair the esophagus in case of congenital defects, cancer, or trauma. A seamless biocompatible off-the-shelf large-diameter tubular scaffold, which is accessible for vascularization, could set the stage for regenerative medicine of the esophagus. The use of seamless scaffolds eliminates the error-prone tubularization step, which is necessary when emanating from flat scaffolds. In this study, we developed and characterized three different types of seamless tubular scaffolds, and evaluated in vivo tissue compatibility, including vascularization by omental wrapping. Scaffolds (luminal Ø âˆ¼ 1.5 cm) were constructed using freezing, lyophilizing, and cross-linking techniques and included (1) single-layered porous collagen scaffold, (2) dual-layered (porous+dense) collagen scaffold, and (3) hybrid scaffold (collagen+incorporated polycaprolacton knitting). The latter had an ultimate tensile strength comparable to a porcine esophagus. To induce rapid vascularization, scaffolds were implanted in the omentum of sheep using a wrapping technique. After 6 weeks of biocompatibility, vascularization, calcification, and hypoxia were evaluated using immunohistochemistry. Scaffolds were biocompatible, and cellular influx and ingrowth of blood vessels were observed throughout the whole scaffold. No calcification was observed, and slight hypoxic conditions were detected only in the direct vicinity of the polymer knitting. It is concluded that seamless large-diameter tubular collagen-based scaffolds can be constructed and vascularized in vivo. Such scaffolds provide novel tools for esophageal reconstruction.


Assuntos
Colágeno/farmacologia , Esôfago/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres/farmacologia , Medicina Regenerativa/métodos , Alicerces Teciduais/química , Animais , Bovinos , Esôfago/efeitos dos fármacos , Omento/efeitos dos fármacos , Omento/fisiologia , Implantação de Prótese , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA