Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Odontology ; 112(3): 938-949, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38367068

RESUMO

Medication-related osteonecrosis of the jaw (MRONJ) is an intractable adverse event. Dental implants are one of the triggering factors of MRONJ, and implant therapy with low MRONJ risk is required. This study aimed to investigate a rat model of MRONJ induced by extraoral placement of titanium materials and the use of mesenchymal stromal cell (MSCs) sheets to prevent MRONJ. Eight-week-old male rats were administered zoledronate and dexamethasone thrice weekly until killing. A week after drug initiation, a titanium screw and a plate were placed on the left buccal side of the mandible. Allogeneic bone marrow-derived MSC sheets were co-grafted with the titanium plates in the MSC sheet ( +) group. Six weeks after titanium placement, the rats were killed, and their excised mandibular bones were subjected to micro-computed tomography (CT) analysis. Histological analysis was performed after the titanium implants were removed. Empty lacunae visualized on hematoxylin and eosin staining were used as evidence of bone necrosis. Bone necrosis was reduced in the MSC sheet ( +) group. Tartrate-resistant acid phosphatase (TRAP) staining revealed a decreased number of TRAP-positive cells in areas with a large number of empty lacunae in the MSC sheet (-) group. Micro-CT analyses demonstrated that the bone volume fraction (BV/TV) was not significantly different between the MSC sheet (-) and ( +) groups. We conclude that MRONJ can be triggered by a titanium placement in rats, and grafting of allogeneic MSC sheets has the potential to prevent MRONJ.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Implantes Dentários , Titânio , Microtomografia por Raio-X , Ácido Zoledrônico , Animais , Ratos , Masculino , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Implantes Dentários/efeitos adversos , Dexametasona , Transplante de Células-Tronco Mesenquimais , Imidazóis , Modelos Animais de Doenças , Ratos Sprague-Dawley , Difosfonatos/efeitos adversos , Mandíbula/cirurgia , Conservadores da Densidade Óssea/efeitos adversos
2.
Cell Tissue Res ; 341(3): 397-404, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20632035

RESUMO

Periodontal-ligament-derived cells (PDL cells) have stem-cell-like properties and, when implanted into periodontal defects in vivo, can induce periodontal regeneration including the formation of new bone, cementum, and periodontal ligament. We have previously demonstrated that PDL cell sheets, harvested from temperature-responsive cell culture dishes, have a great potential for periodontal regeneration. The purpose of this study has been to validate the safety and efficacy of human PDL (hPDL) cell sheets for use in clinical trials. hPDL tissues from three donors were enzymatically digested, and the obtained cells were cultured with media containing autologous serum in a cell-processing center (CPC). The safety and efficacy of hPDL cell sheets were evaluated both in vitro and in vivo. In vitro studies showed that the hPDL cell sheets had high alkaline phosphatase activity and periostin expression (known PDL markers) and no contamination with microorganisms. In vivo studies revealed that hPDL cell sheets, implanted with dentin blocks, induced the formation of cementum and PDL-like tissue in immunodeficient mice. The hPDL cells presented no evidence of malignant transformation. Thus, hPDL cell sheets created in CPCs are safe products and possess the potential to regenerate periodontal tissues.


Assuntos
Regeneração Tecidual Guiada/métodos , Ligamento Periodontal/citologia , Ligamento Periodontal/fisiologia , Alicerces Teciduais , Animais , Técnicas de Cultura de Células/normas , Células Cultivadas , Dentina/citologia , Dentina/metabolismo , Dentina/fisiologia , Estudos de Viabilidade , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/normas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos SCID , Modelos Biológicos , Ligamento Periodontal/transplante , Controle de Qualidade , Alicerces Teciduais/normas
3.
J Clin Periodontol ; 37(12): 1088-99, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20618549

RESUMO

AIM: Periodontal ligament (PDL) is a reliable cell source for periodontal regeneration. In this study, an optimal protocol for the extraction, expansion, and characterization of human PDL (hPDL) cells was examined for clinical trials. MATERIALS AND METHODS: hPDL tissues were obtained from 41 surgically extracted teeth and digested with enzymes. Human adipose-derived stem cells (hADSCs), bone marrow-derived mesenchymal stem cells (hBMMSCs), and gingival fibroblasts (hGFs) were used for comparison. For each sample, the proliferative capacity, colony-forming ability, alkaline phosphatase activity, differentiation ability, the cell surface antigens, gene expression, and regenerative potential were examined. RESULTS: hPDL cells were more successfully extracted with collagenase/dispase [29/30 (96.7%)] than with trypsin/EDTA [8/11 (72.7%)], and exhibited osteogenic potential both in vitro and in vivo. The proliferation of hPDL cells was rapid at a low cell density. hPDL cells frequently differentiated into cementoblastic/osteoblastic lineage (∼60%). In contrast, their adipogenic and chondrogenic potentials were lower than those of hADSCs and hBMMSCs. Some genes (NCAM1, S100A4, and periostin) were preferentially expressed in hPDL cells compared with those of hBMMSCs and hGFs. Immunohistochemical studies revealed the expressions of S100A4 and periostin in hPDL tissue. CONCLUSION: A protocol for the successful cultivation and validation of hPDL cells is proposed for clinical settings.


Assuntos
Transplante de Células/métodos , Ligamento Periodontal/citologia , Adipócitos/fisiologia , Adolescente , Adulto , Fosfatase Alcalina/análise , Animais , Células da Medula Óssea/fisiologia , Moléculas de Adesão Celular/análise , Contagem de Células , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Perfilação da Expressão Gênica , Gengiva/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos F344 , Ratos Nus , Regeneração/fisiologia , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/análise , Células-Tronco/fisiologia , Coleta de Tecidos e Órgãos , Adulto Jovem
4.
Heliyon ; 5(6): e01991, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31338459

RESUMO

Periodontal disease involves the chronic inflammation of tooth supporting periodontal tissues. As the disease progresses, it manifests destruction of periodontal tissues and eventual tooth loss. The regeneration of lost periodontal tissue has been one of the most important subjects in periodontal research. Since their discovery, periodontal ligament stem cells (PDLSCs), have been transplanted into periodontal bony defects to examine their regenerative potential. Periodontal defects were successfully regenerated using PDLSC sheets, which were fabricated by cell sheet engineering in animal models, and for which clinical human trials are underway. To expand the utility of PDLSC sheet, we attempted to construct periodontal tissues around titanium implants with the goal of facilitating the prevention of peri-implantitis. In so doing, we found newly formed cementum-periodontal ligament (PDL) structures on the implant surface. In this mini review, we summarize the literature regarding cell-based periodontal regeneration using PDLSCs, as well as previous trials aimed at forming periodontal tissues around dental implants. Moreover, the recent findings in cementogenesis are reviewed from the perspective of the formation of further stable periodontal attachment structure on dental implant. This mini review aims to summarize the current status of the creation of novel periodontal tissue-bearing dental implants, and to consider its future direction.

5.
Tissue Eng Part A ; 24(15-16): 1273-1282, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29495925

RESUMO

Osseointegrated implants have been recognized as being very reliable and having long-term predictability. However, host defense mechanisms against infection have been known to be impaired around a dental implant because of the lack of a periodontal ligament (PDL). The purpose of our experimental design was to produce cementum and PDL on the implant surface adopting cell sheet technology. To this aim we used PDL-derived cells, which contain multipotential stem cells, as the cell source and we cultured them on an implant material constituted of commercially pure titanium treated with acid etching, blasting, and a calcium phosphate (CaP) coating to improve cell attachment. Implants with adhered human PDL cell sheets were transplanted into bone defects in athymic rat femurs as a xenogeneic model. Implants with adhered canine PDL-derived cell sheets were transplanted into canine mandibular bone as an autologous model. We confirmed that PDL-derived cells cultured with osteoinductive medium had the ability to induce cementum formation. The attachment of PDL cells onto the titanium surface with three surface treatments was accelerated, compared with that onto the smooth titanium surface, at 40 min after starting incubation. Results in the rat model showed that cementum-like and PDL-like tissue was partly observed on the titanium surface with three surface treatments in combination with adherent PDL-derived cell sheets. On the other hand, osseointegration was observed on almost all areas of the smooth titanium surface that had PDL-derived cell sheets, but did not have the three surface treatments. In the canine model, histological observation indicated that formation of cementum-like and PDL-like tissue was induced on the titanium surface with surface treatments and that the PDL-like tissue was perpendicularly oriented between the titanium surface with cementum-like tissue and the bone. Results demonstrate that a periodontal-like structure was formed around a titanium implant, which is similar to the environment existing around a natural tooth. The clinical application of dental implants combined with a cell sheet technique may be feasible as an alternative implant therapy. Furthermore, application of this methodology may play an innovative role in the periodontal, prosthetic, and orthodontic fields in dentistry.


Assuntos
Prótese Ancorada no Osso , Interface Osso-Implante , Implantação Dentária Endóssea , Implantes Dentários , Ligamento Periodontal , Titânio , Animais , Cães , Xenoenxertos , Masculino , Ligamento Periodontal/citologia , Ligamento Periodontal/transplante , Ratos , Ratos Nus , Propriedades de Superfície
6.
Regen Ther ; 9: 38-44, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30525074

RESUMO

BACKGROUND: Periodontitis results in the destruction of tooth-supporting periodontal tissues and does not have the ability to heal spontaneously. Various approaches have been introduced to regenerate periodontal tissues; however, these approaches have limited efficacy for treating severe defects. Cytotherapies combine stem cell biology and tissue engineering to form a promising approach for overcoming these limitations. In this study, we isolated periodontal ligament (PDL)-derived cells from patients and created cell sheets with "Cell Sheet Engineering Technology", using temperature responsive culture dishes, in which all the cultured cells can be harvested as an intact transplantable cell sheet by reducing the temperature of the culture dish. Subsequently, the safety and efficacy of autologous PDL-derived cell sheets were evaluated in a clinical setting. METHODS: A single-arm and single-institute clinical study was performed to verify the safety and efficacy of autologous PDL-derived cell sheets in patients with periodontitis. Wisdom teeth were extracted from patients diagnosed with chronic periodontitis, ranging in age from 33 to 63 years (mean [±SD], 46 ± 12), and periodontal tissues were scraped for cell sources. Three-layered PDL-derived cell sheets were constructed using temperature-responsive culture dishes and transplanted in an autologous fashion following standard flap surgeries. Bony defects were filled with beta-tricalcium phosphate granules. Clinical variables were evaluated at baseline, 3 months, and 6 months. Cone-beam computed tomography was performed at baseline and 6 months. Additionally, mid-long-term follow-up has been performed with patients' agreements. RESULTS: Our method was found to be safe and no severe adverse events were identified. All the findings, including reduction of periodontal probing depth (mean ± SD, 3.2 ± 1.9 mm), clinical attachment gain (2.5 ± 2.6 mm), and increase of radiographic bone height (2.3 ± 1.8 mm), were improved in all 10 cases at 6 months after the transplantation. These therapeutic effects were sustained during a mean follow-up period of 55 ± 19 months, and there were no serious adverse events. CONCLUSIONS: The results of this study validate the safety and efficacy of autologous PDL-derived cell sheets in severe periodontal defects, and the stability of this efficacy during mid-long-term follow up. This cytotherapeutic approach, based on cell sheet engineering, offers an innovative strategy to treat the recognized unmet need of treating severe periodontal defects.

7.
Biores Open Access ; 5(1): 22-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26862470

RESUMO

Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of ß-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that allogeneic PDL-MSC sheets promoted periodontal tissue regeneration without side effects. Therefore, allogeneic transplantation of PDL-MSC sheets has a potential to become an alternative strategy for periodontal regeneration.

8.
J Tissue Eng Regen Med ; 9(4): 343-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23881816

RESUMO

Periodontitis is a inflammation induced by a bacterial infection that causes the destruction of the attachment apparatus of dental roots. Several materials, such as bone graft materials, barrier membranes and protein products have been developed and used to treat periodontal defects clinically; however, it is difficult to regenerate the complete periodontal tissue structure. Recently, cytotherapeutic approaches have been introduced to overcome the limitation of conventional procedures. The in vitro-expanded autologous cells derived from several kinds of tissues have already been used in several clinical trials. These cytotherapeutic treatments have been shown to be safe and effective for the treatment of periodontitis. Our strategy has been to integrate stem cell biology and cell sheet engineering, in which a temperature-responsive intelligent polymer is grafted onto the surface of cell culture dish to create a 'cell sheet', to achieve a novel treatment method for periodontitis. By simple reduction of the temperature to below 32°C, a contiguous cell sheet, which is capable of keeping extracellular matrix proteins and cell-cell interactions intact, can be harvested for transplantation without the use of scaffolds. This technology has already been employed in clinical trials, confirming the safety and efficacy of the treatment. In this review, we introduce recent progress in the engineering of cell sheets and review the potential of cell sheet technology for periodontal regenerative medicine.


Assuntos
Periodontite/terapia , Regeneração , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Humanos , Periodontite/patologia
10.
Biomaterials ; 30(14): 2716-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19201461

RESUMO

Periodontal regeneration has been challenged with chemical reagents and/or biological approaches, however, there is still no sufficient technique that can regenerate complete periodontium, including alveolar bone, cementum, and well-oriented collagen fibers. The purpose of this study was to examine multi-layered sheets of periodontal ligament (PDL)-derived cells for periodontal regeneration. Canine PDL cells were isolated enzymatically and expanded in vitro. The cell population contained cells capable of making single cell-derived colonies at an approximately 20% frequency. Expression of mRNA of periodontal marker genes, S100 calcium binding protein A4 and periostin, was observed. Alkaline phosphatase activity and gene expression of both osteoblastic/cementoblastic and periodontal markers were upregulated by osteoinductive medium. Then, three-layered PDL cell sheets supported with woven polyglycolic acid were transplanted to dental root surfaces having three-wall periodontal defects in an autologous manner, and bone defects were filled with porous beta-tricalcium phosphate. Cell sheet transplantation regenerated both new bone and cementum connecting with well-oriented collagen fibers, while only limited bone regeneration was observed in control group where cell sheet transplantation was eliminated. These results suggest that PDL cells have multiple differentiation properties to regenerate periodontal tissues comprising hard and soft tissues. PDL cell sheet transplantation should prove useful for periodontal regeneration in clinical settings.


Assuntos
Técnicas de Cultura de Células/métodos , Ligamento Periodontal/citologia , Periodonto/lesões , Animais , Separação Celular , Forma Celular , Transplante de Células , Células Cultivadas , Cães , Modelos Animais , Periodonto/diagnóstico por imagem , Periodonto/patologia , Cicatrização , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA