Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(28): 24381-24392, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28640578

RESUMO

Nature has produced many intriguing and spectacular surfaces at the micro- and nanoscales. These small surface decorations act for a singular or, in most cases, a range of functions. The minute landscape found on the lotus leaf is one such example, displaying antiwetting behavior and low adhesion with foreign particulate matter. Indeed the lotus leaf has often been considered the "benchmark" for such properties. One could expect that there are animal counterparts of this self-drying and self-cleaning surface system. In this study, we show that the planthopper insect wing (Desudaba danae) exhibits a remarkable architectural similarity to the lotus leaf surface. Not only does the wing demonstrate a topographical likeness, but some surface properties are also expressed, such as nonwetting behavior and low adhering forces with contaminants. In addition, the insect-wing cuticle exhibits an antibacterial property in which Gram-negative bacteria (Porphyromonas gingivalis) are killed over many consecutive waves of attacks over 7 days. In contrast, eukaryote cell associations, upon contact with the insect membrane, lead to a formation of integrated cell sheets (e.g., among human stem cells (SHED-MSC) and human dermal fibroblasts (HDF)). The multifunctional features of the insect membrane provide a potential natural template for man-made applications in which specific control of liquid, solid, and biological contacts is desired and required. Moreover, the planthopper wing cuticle provides a "new" natural surface with which numerous interfacial properties can be explored for a range of comparative studies with both natural and man-made materials.


Assuntos
Lotus , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insetos , Folhas de Planta , Propriedades de Superfície
2.
Acta Biomater ; 21: 109-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25772496

RESUMO

Geckos, and specifically their feet, have attracted significant attention in recent times with the focus centred around their remarkable adhesional properties. Little attention however has been dedicated to the other remaining regions of the lizard body. In this paper we present preliminary investigations into a number of notable interfacial properties of the gecko skin focusing on solid and aqueous interactions. We show that the skin of the box-patterned gecko (Lucasium sp.) consists of dome shaped scales arranged in a hexagonal patterning. The scales comprise of spinules (hairs), from several hundred nanometres to several microns in length, with a sub-micron spacing and a small radius of curvature typically from 10 to 20 nm. This micro and nano structure of the skin exhibited ultralow adhesion with contaminating particles. The topography also provides a superhydrophobic, anti-wetting barrier which can self clean by the action of low velocity rolling or impacting droplets of various size ranges from microns to several millimetres. Water droplets which are sufficiently small (10-100 µm) can easily access valleys between the scales for efficient self-cleaning and due to their dimensions can self-propel off the surface enhancing their mobility and cleaning effect. In addition, we demonstrate that the gecko skin has an antibacterial action where Gram-negative bacteria (Porphyromonas gingivalis) are killed when exposed to the surface however eukaryotic cell compatibility (with human stem cells) is demonstrated. The multifunctional features of the gecko skin provide a potential natural template for man-made applications where specific control of liquid, solid and biological contacts is required.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis , Lagartos , Molhabilidade , Animais , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
3.
ACS Nano ; 4(1): 129-36, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20099910

RESUMO

The termite is an insect which is a weak flier, has a large wing area in relation to its body mass, and many species typically fly during rain or storm periods. Water droplets placed on these insects' wings will spontaneously roll off the surface. Here we show how the intricate hierarchical array design of these insect wings achieves anti-wetting properties with water bodies of various sizes by reducing contact area and thus adhesion. To repel large droplets, the termite uses an array of hairs with a specially designed nanoarchitecture, which we demonstrate is critical for this function. By coating single hairs with a polymer of varying thicknesses (with a similar hydrophobicity to insect cuticle), we demonstrate that hairs of the same chemistry and with the complete nanoarchitecture show the greatest resistance to penetrating water bodies. The wings also consist of an underlying non-wetting membrane substructure comprising an array of star-shaped microstructures which minimize interaction with micro-sized droplets of water. The sophisticated micro/nanostructured hierarchy on the termite wing membrane not only results in non-wetting at different length scales but also demonstrates a design for weight and material minimization while achieving this state. Elucidating the function of such structures has implications for understanding insect biology and the evolution of wings.


Assuntos
Biomimética/métodos , Isópteros/anatomia & histologia , Nanotecnologia , Asas de Animais/anatomia & histologia , Asas de Animais/química , Animais , Cabelo/química , Cabelo/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Isópteros/ultraestrutura , Microscopia Eletrônica de Varredura , Polímeros/química , Água/análise , Água/química , Molhabilidade , Asas de Animais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA