Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 16(2): 564-77, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25531946

RESUMO

Electrostatically self-assembling hybrid microparticles derived from novel cationic unsaturated arginine-based poly(ester amide) polymers (UArg-PEA) and anionic hyaluronic acid (HA) were fabricated into sub-micron-sized particles in aqueous medium with subsequent UV crosslinking treatment to stabilize the structure. These hybrid microparticles were characterized for size, charge, viscosity, chemical structure, morphology, and biological properties. Depending on the feed ratio of cationic UArg-PEA to anionic HA, the crosslinked microparticles formed spherical structures of 0.772-22.08 µm in diameter, whereas the uncrosslinked microparticles formed a core with an outer petal-like structure of 2.49-15 µm in diameter. It was discovered that the morphological structure of the self-assembled microparticles had a profound influence on their biological properties. At a 1:1 feed ratio of UArg-PEA to HA, the uncrosslinked microparticles showed no cytotoxicity toward NIH 3T3 fibroblasts at concentrations up to 20 µg/mL, and the crosslinked particles exhibited no cytotoxicity at concentrations up to 10 µg/mL. The UArg-PEA/HA hybrid microparticles exhibited a significantly lower macrophage-induced proinflammatory response (via TNF-α) than that from a pure hyaluronic acid control while retaining the beneficial anti-inflammatory IL-10 production by HA. The UArg-PEA/HA microparticles also stimulated size-dependent induction of arginase activity. Therefore, self-assembling these two types of biomaterials in a favorable nontoxic aqueous environment, having complementary biological properties like those of the currently reported UArg-PEA/HA hybrid microparticles, may provide a new class of biomaterials to improve the overall tissue microenvironment for promoting wound healing.


Assuntos
Materiais Biocompatíveis/química , Ácido Hialurônico/química , Polissacarídeos/química , Eletricidade Estática , Animais , Materiais Biocompatíveis/metabolismo , Ácido Hialurônico/metabolismo , Macrófagos/metabolismo , Camundongos , Células NIH 3T3 , Polissacarídeos/metabolismo , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA