Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain ; 142(8): 2215-2229, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199454

RESUMO

Charcot-Marie-Tooth disease is a hereditary motor and sensory neuropathy exhibiting great clinical and genetic heterogeneity. Here, the identification of two heterozygous missense mutations in the C1orf194 gene at 1p21.2-p13.2 with Charcot-Marie-Tooth disease are reported. Specifically, the p.I122N mutation was the cause of an intermediate form of Charcot-Marie-Tooth disease, and the p.K28I missense mutation predominately led to the demyelinating form. Functional studies demonstrated that the p.K28I variant significantly reduced expression of the protein, but the p.I122N variant increased. In addition, the p.I122N mutant protein exhibited the aggregation in neuroblastoma cell lines and the patient's peroneal nerve. Either gain-of-function or partial loss-of-function mutations to C1ORF194 can specify different causal mechanisms responsible for Charcot-Marie-Tooth disease with a wide range of clinical severity. Moreover, a knock-in mouse model confirmed that the C1orf194 missense mutation p.I121N led to impairments in motor and neuromuscular functions, and aberrant myelination and axonal phenotypes. The loss of normal C1ORF194 protein altered intracellular Ca2+ homeostasis and upregulated Ca2+ handling regulatory proteins. These findings describe a novel protein with vital functions in peripheral nervous systems and broaden the causes of Charcot-Marie-Tooth disease, which open new avenues for the diagnosis and treatment of related neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Animais , Cálcio/metabolismo , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Linhagem
2.
Anal Biochem ; 574: 39-45, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30914245

RESUMO

A versatile, robust and efficient differential potential ratiometric sensing platform was developed for enantioselective recognition of dual chiral targets based on a composite membrane of molecularly imprinted polymers (MIPs) and reduced graphene oxide (rGO) modified glassy carbon electrode (GCE). The functional chitosan-based MIPs and rGO were compatibly immobilized on the GCE with high selectivity and efficient signal amplification. Moreover, via the systematic optimization of series conditions, a distinct potential difference (PD), reaching 135 mV, was obtained between the R-/S-prop based on the MIPs/rGO/GCE. In a controllable concentration range from 50 µM to 1000 µM, different ratios of R-/S-prop were linearly related to the peak potentials (Eps) in the racemic mixture. Using this low-cost reversible electrochemical platform, both Prop enantiomers were simultaneously identified with high repeatability and time-based stability. This novel semi-quantitative electrochemical sensing platform was established to rapidly quantify the ratio of S-/R-prop by Ep for the chiral drug recognition with great potential for practical applications in fields of pharmacological detection and clinical analysis.


Assuntos
Antagonistas Adrenérgicos beta/análise , Propranolol/análise , Antagonistas Adrenérgicos beta/química , Técnicas Eletroquímicas/métodos , Grafite/química , Limite de Detecção , Impressão Molecular , Polímeros/química , Propranolol/química , Estereoisomerismo
3.
Hum Mutat ; 38(1): 95-104, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27680507

RESUMO

Dentin dysplasia type I (DDI) is an autosomal-dominant genetic disorder resulting from dentin defects. The molecular basis of DDI remains unclear. DDI exhibits unique characteristics with phenotypes featuring obliteration of pulp chambers and diminutive root, thus providing a useful model for understanding the genetics of tooth formation. Using a large Chinese family with 14 DDI patients, we mapped the gene locus responsible for DDI to 3p26.1-3p24.3 and further identified a missense mutation, c.353C>A (p.P118Q) in the SSUH2 gene on 3p26.1, which co-segregated with DDI. We showed that SSUH2 (p.P118Q) perturbed the structure and significantly reduced levels of mutant (MT) protein and mRNA compared with wild-type SSUH2. Furthermore, MT P141Q knock-in mice (+/- and -/-) had a unique partial obliteration of the pulp cavity and upregulation or downregulation of six major genes involved in odontogenesis: Dspp, Dmp1, Runx2, Pax9, Bmp2, and Dlx2. The phenotype of missing teeth was determined in zebrafish with morpholino gene knockdowns and rescued by injection of normal human mRNA. Taken together, our observations demonstrate that SSUH2 disrupts dental formation and that this novel gene, together with other odontogenesis genes, is involved in tooth development.


Assuntos
Displasia da Dentina/diagnóstico , Displasia da Dentina/genética , Genes Dominantes , Estudos de Associação Genética , Predisposição Genética para Doença , Chaperonas Moleculares/genética , Mutação , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Mapeamento Cromossômico , Análise Mutacional de DNA , Feminino , Técnicas de Silenciamento de Genes , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Transgênicos , Repetições de Microssatélites , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Linhagem , Fenótipo , Radiografia , Adulto Jovem , Peixe-Zebra
4.
J Med Genet ; 53(9): 624-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27247351

RESUMO

BACKGROUND: Dentin dysplasia I (DDI) is a genetically heterogeneous autosomal-dominant disorder characterised by rootless teeth with abnormal pulpal morphology, the aetiology of which presents as genetically heterogeneous. METHODS AND RESULTS: Using a cohort of a large Chinese family with 10 patients with DDI, we mapped to a 9.63 Mb candidate region for DDI on chromosome 18q21.2-q21.33. We then identified a mutation IVS7+46C>G which resulted in a novel donor splice site in intron 7 of the VPS4B gene with co-segregation of all 10 affected individuals in this family. The aberrant transcripts encompassing a new insert of 45 bp in size were detected in gingival cells from affected individuals. Protein structure prediction showed that a 15-amino acid insertion altered the ATP-binding cassette of VPS4B. The mutation resulted in significantly reduced expression of mRNA and protein and altered subcellular localisation of VPS4B, indicating a loss of function of VPS4B. Using human gingival fibroblasts, the VPS4B gene was found to act as an upstream transducer linked to Wnt/ß-catenin signalling and regulating odontogenesis. Furthermore, knockdown of vps4b in zebrafish recapitulated the reduction of tooth size and absence of teeth similar to the tooth phenotype exhibited in DDI index cases, and the zebrafish mutant phenotype could be partially rescued by wild-type human VPS4B mRNA. We also observed that vps4b depletion in the zebrafish negatively regulates the expression of some major genes involved in odontogenesis. CONCLUSIONS: This study identifies VPS4B as a disease-causing gene for DDI, which is one of the important contributors to tooth formation, through the Wnt/ß-catenin signalling pathway.


Assuntos
Adenosina Trifosfatases/genética , Displasia da Dentina/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação/genética , Splicing de RNA/genética , ATPases Associadas a Diversas Atividades Celulares , Animais , Povo Asiático/genética , Sequência de Bases , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Odontogênese/genética , Linhagem , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , Via de Sinalização Wnt/genética , Peixe-Zebra/genética , beta Catenina/genética
5.
Anal Chem ; 88(4): 2345-52, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26765320

RESUMO

A disposable, equipment-free, versatile point-of-care testing platform, microfluidic distance readout sweet hydrogel integrated paper-based analytical device (µDiSH-PAD), was developed for portable quantitative detection of different types of targets. The platform relies on a target-responsive aptamer cross-linked hydrogel for target recognition, cascade enzymatic reactions for signal amplification, and microfluidic paper-based analytic devices (µPADs) for visual distance-based quantitative readout. A "sweet" hydrogel with trapped glucoamylase (GA) was synthesized using an aptamer as a cross-linker. When target is present in the sample, the "sweet" hydrogel collapses and releases enzyme GA into the sample, generating glucose by amylolysis. A hydrophilic channel on the µPADs is modified with glucose oxidase (GOx) and colorless 3,3'-diaminobenzidine (DAB) as the substrate. When glucose travels along the channel by capillary action, it is converted to H2O2 by GOx. In addition, DAB is converted into brown insoluble poly-3,3'-diaminobenzidine [poly(DAB)] by horseradish peroxidase, producing a visible brown bar, whose length is positively correlated to the concentration of targets. The distance-based visual quantitative platform can detect cocaine in urine with high selectivity, sensitivity, and accuracy. Because the target-induced cascade reaction is triggered by aptamer/target recognition, this method is widely suitable for different kinds of targets. With the advantages of low cost, ease of operation, general applicability, and disposability with quantitative readout, the µDiSH-PAD holds great potential for portable detection of trace targets in environmental monitoring, security inspection, personalized healthcare, and clinical diagnostics.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Técnicas Analíticas Microfluídicas , Papel , Testes Imediatos , Cocaína/urina , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Equipamentos Descartáveis , Glucana 1,4-alfa-Glucosidase/metabolismo , Glucose/metabolismo , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo
6.
Anal Chem ; 87(18): 9204-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26295334

RESUMO

Traditional electrochemical DNA biosensors need DNA immobilization on the electrode surface, which is tedious and time-consuming. In this study, a simple but ultraselective electrochemical DNA biosensor had been designed to determine target DNA species related to oral cancer overexpressed 1 in saliva, which combines the signal amplification of nicking endonuclease assisted target recycling with the immobilization-free electrochemical method. The complementary substrate strand of target DNA species contains a simple asymmetric sequence had been modified with a methylene blue at the 3' terminal first, which cannot diffuse easily to the negative charged ITO electrode surface due to the abundant negative charges. The presence of the target DNA would trigger the formation of double-stranded DNA (dsDNA). Then the nicking endonuclease can recognize the simple asymmetric sequence in the dsDNA and cleave the substrate strand of ds-DNA into two pieces, a long ssDNA and a 2-base ssDNA linked with methylene blue. The short one can diffuse easily to the negative charged ITO electrode surface and results in the enhanced electrochemical response detected. At the same time, the target DNA can dissociate from the dsDNA and trigger the next round of hybridization, cleavage, and releasing, which results in the signal amplification. This homogeneous DNA biosensor can detect as low as 0.35 pM (S/N = 3) target DNA. Compared with the traditional heterogeneous electrochemical DNA biosensors, which are tedious and time-consuming due to the complex DNA immobilization process, the assay not only owns the merits of simple and high efficiency since performed in a homogeneous solution but also exhibits a high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , DNA/genética , Desoxirribonuclease I/metabolismo , Neoplasias Bucais/genética , Técnicas de Amplificação de Ácido Nucleico , Pareamento Incorreto de Bases , Sequência de Bases , Materiais Biomiméticos/química , Calibragem , Eletroquímica , Limite de Detecção , Polimorfismo de Nucleotídeo Único , Saliva/química , Compostos de Estanho/química
7.
Anal Chem ; 87(8): 4275-82, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25806667

RESUMO

A versatile point-of-care assay platform was developed for simultaneous detection of multiple targets based on a microfluidic paper-based analytic device (µPAD) using a target-responsive hydrogel to mediate fluidic flow and signal readout. An aptamer-cross-linked hydrogel was used as a target-responsive flow regulator in the µPAD. In the absence of a target, the hydrogel is formed in the flow channel, stopping the flow in the µPAD and preventing the colored indicator from traveling to the final observation spot, thus yielding a "signal off" readout. In contrast, in the presence of a target, no hydrogel is formed because of the preferential interaction of target and aptamer. This allows free fluidic flow in the µPAD, carrying the indicator to the observation spot and producing a "signal on" readout. The device is inexpensive to fabricate, easy to use, and disposable after detection. Testing results can be obtained within 6 min by the naked eye via a simple loading operation without the need for any auxiliary equipment. Multiple targets, including cocaine, adenosine, and Pb(2+), can be detected simultaneously, even in complex biological matrices such as urine. The reported method offers simple, low cost, rapid, user-friendly, point-of-care testing, which will be useful in many applications.


Assuntos
Adenosina/análise , Cocaína/análise , DNA/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Chumbo/análise , Técnicas Analíticas Microfluídicas , Papel , DNA/síntese química , DNA/isolamento & purificação , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/isolamento & purificação , Estrutura Molecular , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Sistemas Automatizados de Assistência Junto ao Leito
8.
Chemosphere ; 307(Pt 2): 135814, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35921887

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is one of the most extensively utilized plasticizers in the plastic manufacturing process. It is widely used in various fields due to its low cost and excellent effect. Although there is evidence that DEHP is harmful to animal and human health, DEHP-induced gill toxicity in aquatic organisms is inconclusive, and its mechanism has not been fully elucidated. Here, we investigated the effects of DEHP acute exposure on crucian carp gills at environmentally relevant concentrations of 20, 100, and 500 µg/L. Multi-omics profiling and biochemical assays were employed to characterize the potential toxicological mechanisms. The results showed that acute exposure to 100 and 500 µg/L of DEHP leads to oxidative stress in gills, as evidenced by overproduction of reactive oxygen species (ROS), increased antioxidant enzyme activity, and the transformation of glutathione from reduced to oxidized form, resulting in lipid peroxidation. Integrative analysis of transcriptomics and metabolomics indicated that increased purine metabolism was the potential source of increased ROS. Moreover, lipid metabolism disorder, including arachidonic acid metabolism, induces inflammation. Further, DEHP causes the imbalance of the CYP enzyme system in the gill, and DEHP-induced gill toxicity in crucian carp was associated with interference with CYP450 homeostasis. Taken together, this study broadens the molecular understanding of the DEHP-induced gill toxicity in aquatic organisms and provides novel perspectives for assessing the effects of DEHP on target and non-target aquatic organisms in the environment.


Assuntos
Carpas , Dietilexilftalato , Animais , Antioxidantes/metabolismo , Organismos Aquáticos/metabolismo , Ácido Araquidônico/metabolismo , Carpas/metabolismo , Dietilexilftalato/metabolismo , Brânquias/metabolismo , Glutationa/metabolismo , Carpa Dourada/metabolismo , Humanos , Ácidos Ftálicos , Plastificantes/metabolismo , Plásticos/metabolismo , Purinas , Espécies Reativas de Oxigênio/metabolismo
9.
Exp Ther Med ; 20(6): 152, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33093890

RESUMO

Hypophosphatasia (HPP) is a rare hereditary systemic disease that is characterized by defective bone and/or dental mineralization, and is caused by mutations in the alkaline phosphatase gene (ALPL). The present study investigated the ALPL mutation in a Chinese Han family with HPP and studied the pathogenesis of the mutations of the ALPL gene. DNA was extracted from peripheral venous blood of the family members. Sanger sequencing was used to screen the mutations. Associations between pathogenesis for both mutations were analyzed by bioinformatics, subcellular localization, measurement of enzyme activity and western blotting. Sanger sequencing revealed the compound heterozygous mutations c.203C>T (p.T68M) and c.571G>A (p.E191K). The mutations were located at exon 4 and 6 of the ALPL gene and were predicted by Polyphen-2 analysis to be harmful. Protein analysis indicated a decrease in mature protein production and lower enzyme activity in 293T cells transfected with plasmids carrying the mutations. The ALPL gene was cloned into the pcDNA3.1(+) vector and mutant plasmids ALPL-pT68M and ALPL-pE191K were constructed. Immunofluorescence observed in cells transfected with the ALPL-pE191K mutant plasmid was mainly located in the cell membrane. However, staining in the cytoplasm was increased compared with the wild type, and almost no fluorescence was identified in 293T cells transfected with the ALPL-pT68M mutant plasmid. The present findings demonstrated that the compound heterozygous c.571G>A and c.203C>T mutations may contribute to childhood HPP by resulting in mislocalization, decreased protein expression and loss of enzyme activity in a Han Chinese family. The results of the current study may provide insights into the potential molecular mechanism of HPP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA