Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242414

RESUMO

In order to modify colonic release behavior of lactoferrin (Lf), a hydrophobic composite nanofibrous carrier (CNC) was constructed by emulsion coaxial electrospinning. Ethylcellulose/pectin based water-in-oil emulsion and Lf-contained polyvinyl alcohol solution were used as shell and core fluids, respectively. An electrospinning diagram was first constructed to screen out suitable viscosity (51-82 cP) and conductivity (960-1300 µS/cm) of the dispersed phase of pectin solution for successful electrospinning of shell emulsion. Varying mass fraction of pectin solution (5 %-20 %) of shell emulsion during emulsion coaxial electrospinning obtained CNCs with different micro-structures, labeled as 5&95 CNC, 10&90 CNC, 15&85 CNC, 20&80 CNC. These CNCs all achieved colonic delivery of Lf (>95 %), and the time for complete release of Lf in simulated colon fermentation process were 10, 7, 5 and 3 h, respectively. That is, the greater the pectin content in CNC, the faster the release rate of stabilized Lf in colon. Lf release in simulated colon fermentation fluid involved complex mechanisms, in which diffusion release of Lf was dominant. Increasing colonic release rate of Lf enhanced its regulation effect on the expression levels of cell cycle arrest and apoptosis-related protein and promote its effective inhibition on the proliferation of HCT116 cell.


Assuntos
Celulose/análogos & derivados , Neoplasias do Colo , Nanofibras , Humanos , Pectinas/química , Lactoferrina/química , Emulsões/química , Neoplasias do Colo/tratamento farmacológico
2.
Mater Sci Eng C Mater Biol Appl ; 109: 110503, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228963

RESUMO

Pickering emulsion (PE) stabilized by bio-compatible polymer nanoparticles (NPs) was first developed for the encapsulation of lipophilic tocopheryl acetate (TA) for its application in cosmetics. The poly(lactide-co-glycolide) (PLGA)/poly(styrene-co-4-styrene-sulfonate) (PSS) NPs were prepared by solvent displacement, and then they were used as emulsifier particles to fabricate TA-encapsulated PE. It was found that the TA encapsulation efficiency was >98%. Scanning electron microscope analysis showed that the obtained PE exhibited 'shell' structure. The PE droplets had spherical shape with diameter around 2 µm and good dispersibility as evidenced by laser scanning confocal microscope. In addition, the PE was stable at the pH range of 4.29-7.07 which was compatible to skin pH. Meanwhile, the PE also showed good storage stability since there was no obvious change in its diameter, PDI and TA retention after storage at 4 °C for 30 days. The DPPH method confirmed that TA retained its antioxidation in the PE preparation process. Moreover, an improved UV irradiation stability was observed for the TA after being encapsulated in the PE. The results of cytotoxicity test suggested that the PE was compatible to the Hacat cell line (human immortalized keratinocytes). And there is negligible influence in the cellular uptake of TA after its encapsulation in the PE. However, the cellular antioxidant activity (CAA) of encapsulated TA presented a significant increase from 1.32 to 1.56 µM quercetin equivalent/mg·mL-1. Hence, the prepared PE was promising as the carrier of TA for its cosmetic application.


Assuntos
Antioxidantes/química , Emulsões/química , Nanopartículas/química , alfa-Tocoferol/química , Compostos de Bifenilo/química , Microscopia Confocal , Picratos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
3.
J Colloid Interface Sci ; 552: 186-195, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125829

RESUMO

Advances in pharmaceutical technology have promoted the development of colon-targeted delivery system for oral administration of bioactive peptides or proteins to enhance their bioavailability. In this study, a multi-unit nanofiber mat was fabricated by coaxial electrospinning and its feasibility as the colon-targeted delivery system for a bioactive peptide, salmon calcitonin (sCT), was investigated. Sodium alginate and sCT-loaded liposome coated with pectin served as the shell layer and core layer, respectively. An in vitro study demonstrated that the encapsulated sCT was released in a sustained and colon-targeted way. Analysis using different mathematical models showed that release followed a complex mechanism. In addition, greater amounts of sCT were released from the core-shell nanofiber mat into simulated colon fluid (SCF) than was released from a uniaxial nanofiber mat (65.2% vs. 47.8%). The use of a core-shell nanofiber mat further alleviated the burst release of sCT into simulated gastric and intestinal fluid (SGF and SIF), demonstrating the superiority of a multi-unit vehicle for colon-targeted delivery of sCT. Furthermore, 88% of the bioactivity of encapsulated sCT was retained. This multi-unit vehicle offers a better-designed vehicle for the colon-targeted sustained release of bioactive peptides or proteins and, thus, should improve oral bioavailability.


Assuntos
Calcitonina/metabolismo , Colo/metabolismo , Nanofibras/química , Pectinas/metabolismo , Administração Oral , Alginatos/administração & dosagem , Alginatos/química , Alginatos/metabolismo , Disponibilidade Biológica , Calcitonina/administração & dosagem , Calcitonina/química , Colo/química , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/metabolismo , Nanofibras/administração & dosagem , Tamanho da Partícula , Pectinas/administração & dosagem , Pectinas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA