Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Eur Cell Mater ; 38: 94-105, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31529455

RESUMO

This study aimed at investigating in vitro and in vivo the efficiency of commercially available fibrin as a carrier for controlled and sustained bone morphogenetic protein-2 (BMP-2) release to induce bone formation and reduce the side effects of its use. In vitro release and activity of low-dose recombinant human BMP-2 (rhBMP-2) (37.5 µg/mL) embedded in commercially available fibrin were evaluated and, subsequently, critical-size femur defects in rats were grafted to study bone regeneration and vascularisation by micro-computed tomography (µCT) and histology. In vitro experiments showed a sustained BMP-2 release with a high BMP activity remaining after 28 d. In vivo, fibrin loaded with BMP-2 showed an extremely fast bone healing, with a large amount of new bone formation throughout the entire defect in the first 4 weeks and complete cortical repair and fusion after 8 weeks, with no ectopic bone formation. In contrast, the control fibrin group did not fuse after 12 weeks. Vascularisation was similar in both groups at 4 and 12 weeks after implantation. In conclusion, commercially available fibrin is a very efficient carrier for rhBMP-2 to graft critical-size cortical bone defects and might be a more optimal delivery vehicle for BMP-2-induced bone regeneration than currently available collagen sponges.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Substitutos Ósseos/química , Fraturas do Fêmur/terapia , Adesivo Tecidual de Fibrina/farmacologia , Consolidação da Fratura , Animais , Substitutos Ósseos/efeitos adversos , Linhagem Celular , Células Cultivadas , Liberação Controlada de Fármacos , Fêmur/efeitos dos fármacos , Humanos , Hidrogéis/efeitos adversos , Hidrogéis/química , Camundongos , Neovascularização Fisiológica , Ratos , Ratos Wistar
2.
Eur Cell Mater ; 37: 402-419, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31094449

RESUMO

Immune cells and their soluble factors regulate skeletal cells during normal bone regeneration and pathological bone formation. Bacterial infections can trigger immune responses that activate pro-osteogenic pathways, but these are usually overshadowed by osteolysis and concerns of systemic inflammation. The aim of this study was to determine whether the transient local inflammatory reaction to non-viable bacterial immune agonists could lead to favourable new bone formation. In a series of rabbit studies, as proof-of-concept, how tibial intramedullary injection of viable or killed bacterial species affected bone remodelling and new bone formation was determined. Application of killed bacteria led to considerable new bone formation after 4 weeks, without the prolonged systemic inflammation and exaggerated bone lysis seen with active infection. The osteo-immunomodulatory effects of various species of killed bacteria and the dose response relationship were subsequently screened in ectopically-implanted ceramic scaffolds. Histomorphometry after 8 weeks showed that a relatively low dose of killed bacteria enhanced ectopic bone induction. Moreover, lipoteichoic acid - the bacterial cell-wall derived toll-like-receptor (TLR)-2 activator - was identified as an osteo-stimulatory factor. Collectively, the data indicated that bacterial stimuli could be harnessed to stimulate osteogenesis, which occurs through a synergy with osteoinductive signals. This finding holds promise for the use of non-viable bacteria, bacterial antigens, or their simplified analogues as immuno-modulatory bone regenerating tools in bone biomaterials.


Assuntos
Bactérias/imunologia , Regeneração Óssea/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Tíbia/imunologia , Tíbia/microbiologia , Animais , Materiais Biocompatíveis/farmacologia , Feminino , Osteoblastos/imunologia , Osteogênese/imunologia , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais
3.
Osteoarthritis Cartilage ; 26(12): 1744-1752, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145230

RESUMO

OBJECTIVE: Aging can cause an increase in the stiffness of hyaline cartilage as a consequence of increased protein crosslinks. By induction of crosslinking, a reduction in the diffusion of solutions into the hyaline cartilage has been observed. However, there is a lack of knowledge about the effects of aging on the biophysical and biochemical properties of the temporomandibular joint (TMJ) cartilage. Hence, the aim of this study was to examine the biophysical properties (thickness, stiffness, and diffusion) of the TMJ condylar cartilage of horses of different ages and their correlation with biochemical parameters. MATERIALS AND METHODS: We measured the compressive stiffness of the condyles, after which the diffusion of two contrast agents into cartilage was measured using Contrast Enhanced Computed Tomography technique. Furthermore, the content of water, collagen, GAG, and pentosidine was analyzed. RESULTS: Contrary to our expectations, the stiffness of the cartilage did not change with age (modulus remained around 0.7 MPa). The diffusion of the negatively charged contrast agent (Hexabrix) also did not alter. However, the diffusion of the uncharged contrast agent (Visipaque) decreased with aging. The flux was negatively correlated with the amount of collagen and crosslink level which increased with aging. Pentosidine, collagen, and GAG were positively correlated with age whereas thickness and water content showed negative correlations. CONCLUSION: Our data demonstrated that aging was not necessarily reflected in the biophysical properties of TMJ condylar cartilage. The combination of the changes happening due to aging resulted in different diffusive properties, depending on the nature of the solution.


Assuntos
Envelhecimento/fisiologia , Cartilagem Articular/fisiologia , Cavalos/fisiologia , Côndilo Mandibular/fisiologia , Articulação Temporomandibular/fisiologia , Envelhecimento/patologia , Animais , Fenômenos Biomecânicos/fisiologia , Cartilagem Articular/anatomia & histologia , Cartilagem Articular/diagnóstico por imagem , Colágeno/metabolismo , Força Compressiva/fisiologia , Meios de Contraste/farmacocinética , Difusão , Ácido Ioxáglico/farmacocinética , Côndilo Mandibular/anatomia & histologia , Côndilo Mandibular/diagnóstico por imagem , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Ácidos Tri-Iodobenzoicos/farmacocinética
4.
Eur Cell Mater ; 29: 35-41; discussion 41, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25552427

RESUMO

Treatment of large bone defects is currently performed using mainly autograft or allograft bone. There are important drawbacks to bone grafting, such as limited availability, donor site morbidity in the case of autograft and inferior performance of allografts. Therefore, there is a great need for a suitable bone graft substitute. In order to evaluate efficiently newly developed biomaterials and factors intended for orthopaedic surgery, the bone chamber is a very suitable model. To allow longitudinal investigation of bone growth with µCT, a new bone chamber made of radiolucent polyether ether ketone (PEEK) was developed and studied for its feasibility. Therefore, PEEK bone chambers were placed on rat tibiae, and filled with vehicle (Matrigel without growth factors, negative controls), with bone morphogenetic protein 2 (BMP-2, positive controls), or a mix of growth factors combining BMP-2, vascular endothelial growth factor and the chemokine stromal cell-derived factor 1α, all laden on gelatin microspheres for controlled release (combined growth factors). Growth factor presence led to a significant increase in bone formation after 8 weeks, which subsided after 12 weeks, underlining the importance of longitudinal analysis. We conclude that the PEEK-bone chamber is a suitable translational animal model to assess orthotopic bone formation in a longitudinal manner.


Assuntos
Substitutos Ósseos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Osteogênese/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Animais , Benzofenonas , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Quimiocina CXCL12/farmacologia , Colágeno , Combinação de Medicamentos , Estudos de Viabilidade , Cetonas/farmacologia , Laminina , Modelos Animais , Equipamentos Ortopédicos , Polietilenoglicóis/farmacologia , Polímeros , Proteoglicanas , Ratos , Tíbia/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Microtomografia por Raio-X
5.
Eur Cell Mater ; 29: 141-53; discussion 153-4, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25738583

RESUMO

Regeneration of load-bearing segmental bone defects is a major challenge in trauma and orthopaedic surgery. The ideal bone graft substitute is a biomaterial that provides immediate mechanical stability, while stimulating bone regeneration to completely bridge defects over a short period. Therefore, selective laser melted porous titanium, designed and fine-tuned to tolerate full load-bearing, was filled with a physiologically concentrated fibrin gel loaded with bone morphogenetic protein-2 (BMP-2). This biomaterial was used to graft critical-sized segmental femoral bone defects in rats. As a control, porous titanium implants were either left empty or filled with a fibrin gels without BMP-2. We evaluated bone regeneration, bone quality and mechanical strength of grafted femora using in vivo and ex vivo µCT scanning, histology, and torsion testing. This biomaterial completely regenerated and bridged the critical-sized bone defects within eight weeks. After twelve weeks, femora were anatomically re-shaped and revealed open medullary cavities. More importantly, new bone was formed throughout the entire porous titanium implants and grafted femora regained more than their innate mechanical stability: torsional strength exceeded twice their original strength. In conclusion, combining porous titanium implants with a physiologically concentrated fibrin gels loaded with BMP-2 improved bone regeneration in load-bearing segmental defects. This material combination now awaits its evaluation in larger animal models to show its suitability for grafting load-bearing defects in trauma and orthopaedic surgery.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Fibrina/farmacologia , Fraturas Ósseas/terapia , Próteses e Implantes , Titânio , Animais , Fenômenos Biomecânicos , Regeneração Óssea , Substitutos Ósseos/farmacologia , Fêmur/efeitos dos fármacos , Fêmur/lesões , Fêmur/cirurgia , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/fisiopatologia , Géis , Masculino , Microscopia Eletrônica de Varredura , Porosidade , Ratos Wistar , Suporte de Carga , Microtomografia por Raio-X
6.
J Control Release ; 358: 667-680, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37207794

RESUMO

Despite being the most widely used biomaterials in orthopedic surgery, metallic implants do not induce new bone growth because they are bioinert. Surface biofunctionalization of implants with immunomodulatory mediators is a recent approach to promote osteogenic factors that facilitate bone regeneration. Liposomes (Lip) can be used as a low-cost, efficient and simple immunomodulator to stimulate immune cells in favor of bone regeneration. Even though liposomal coating systems have been reported previously, their main disadvantage is their limited ability to preserve liposome integrity after drying. In order to address this issue, we developed a hybrid system in which liposomes could be embedded in a polymeric hydrogel namely gelatin methacryloyl (GelMA). Specifically, we have developed a novel versatile coating strategy using electrospray technology to coat implants with GelMA/Liposome without using adhesive intermediate layer. The two differently charged Lip (i.e., anionic and cationic) were blended with GelMA and coated via electrospray technology on the bone-implant surfaces. The results showed that the developed coating withstood mechanical stress during surgical replacement, and Lip inside GelMA coating stayed intact in different storage conditions for a minimum of 4 weeks. Surprisingly, bare Lip, either cationic or anionic, improved the osteogenesis of human Mesenchymal Stem Cells (MSCs) by inducing pro-inflammatory cytokines, even at a low dosage of Lip released from the GelMA coating. More importantly, we showed that the inflammatory response could be fine-tuned by selecting the Lip concentration, Lip/hydrogel ratio, and coating thickness to determine the timing of the release such that we can accommodate different clinical needs. These promising results pave the way to use these Lip coatings to load different types of therapeutic cargo for bone-implant applications.


Assuntos
Regeneração Óssea , Lipossomos , Humanos , Osteogênese , Gelatina , Hidrogéis/farmacologia
7.
Acta Biomater ; 125: 345-357, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33618018

RESUMO

The unprecedented properties of meta-biomaterials could pave the way for the development of life-lasting orthopedic implants. Here, we used non-auxetic meta-biomaterials to address the shortcomings of the current treatment options in acetabular revision surgery. Due to the severe bone deficiencies and poor bone quality, it can be very challenging to acquire adequate initial implant stability and long-term fixation. More advanced treatments, such as patient-specific implants, do guarantee the initial stability, but are formidably expensive and may eventually fail due to stress shielding. We, therefore, developed meta-implants furnished with a deformable porous outer layer. Upon implantation, this layer plastically deforms into the defects, thereby improving the initial stability and homogeneously stimulating the surrounding bone. We first studied the space-filling behavior of additively manufactured pure titanium lattices, based on six different unit cells, in a compression test complemented with full-field strain measurements. The diamond, body-centered cubic, and rhombic dodecahedron unit cells were eventually selected for the design of the deformable porous outer layer. Each design came in three different relative density profiles, namely maximum (MAX), functionally graded (FG), and minimum (MIN). After their compression in bone-mimicking molds with simulated acetabular defects, the space-filling behavior of the implants was evaluated using load-displacement curves, micro-CT images, and 3D reconstructions. The meta-implants with an FG diamond infill exhibited the most promising space-filling behavior. However, the required push-in forces exceed the impact forces currently applied in surgery. Future research should, therefore, focus on design optimization, to improve the space-filling behavior and to facilitate the implantation process for orthopedic surgeons. STATEMENT OF SIGNIFICANCE: Ideally, orthopedic implants would last for the entire lifetime of the patient. Unfortunately, they rarely do. Critically sized defects are a common sight in the revision of acetabular cups, and rather difficult to treat. The permanent deformation of lattice structures can be used to create shape-morphing implants that would fill up the defect site, and thereby restore the physiological loading conditions. Bending-dominated structures were incorporated in the porous outer layer of the space-filling meta-implants for their considerable lateral expansion in response to axial compression. A functionally graded density offered structural integrity at the joint while enhancing the deformability at the bone-implant interface. With the use of a more ductile metal, CP-Ti, these meta-implants could be deformed without strut failure.


Assuntos
Materiais Biocompatíveis , Próteses e Implantes , Humanos , Fenômenos Mecânicos , Porosidade , Titânio
8.
J Mech Behav Biomed Mater ; 104: 103658, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174416

RESUMO

The innovative design of orthopedic implants could play an important role in the development of life-lasting implants, by improving both primary and secondary implant fixations. The concept of meta-biomaterials aims to achieve a unique combination of mechanical, mass transport, and biological properties through optimized topological design of additively manufactured (AM) porous biomaterials. In this study, we primarily focused on a specific class of meta-biomaterials, namely auxetic meta-biomaterials. Their extraordinary behavior of lateral expansion in response to axial tension could potentially improve implant-bone contact in certain orthopedic applications. In this work, a multitude of auxetic meta-biomaterials were rationally designed and printed from Ti-6Al-4V using a commercially available laser powder bed fusion process called selective laser melting. The re-entrant hexagonal honeycomb unit cell was used as a starting point, which was then parametrically tuned to obtain a variety of mechanical and morphological properties. In this two-step study, the morphology and quasi-static properties of the developed meta-biomaterials were assessed using mechanical experiments accompanied with full-field strain measurements using digital image correlation. In addition, all our designs were computationally modelled using the finite element method. Our results showed the limits of the AM processes for the production of auxetic meta-biomaterials in terms of which values of the design parameters (e.g., re-entrant angle, relative density, and aspect ratio) could be successfully manufactured. We also found that the AM process itself imparts significant influence on the morphological and mechanical properties of the resulting auxetic meta-biomaterials. This further highlights the importance of experimental studies to determine the actual mechanical properties of such metamaterials. The elastic modulus and strength of many of our designs fell within the range of those reported for both trabecular and cortical bone. Unprecedented properties like these could be used to simultaneously address the different challenges faced in the mechanical design of orthopedic implants.


Assuntos
Materiais Biocompatíveis , Titânio , Módulo de Elasticidade , Teste de Materiais , Porosidade
9.
Vet J ; 251: 105340, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31492385

RESUMO

Cartilage repair remains a major challenge and treatment of (osteo)chondral defects generally results in poor quality fibrous repair tissue. Our approach aims to address some of the major biomechanical issues encountered in scaffold-based cartilage repair, such as insufficient stiffness of the scaffolds, step formation at the interface with the native tissue and inadequate integration with the original tissue. Two osteochondral defects were created on the medial femoral trochlear ridge in each stifle of six Shetland ponies. The defects were filled with a bi-layered implant consisting of a polyetherketoneketone (PEKK) bone anchor and a polyurethane elastomer. The defects in the contralateral joint served as unfilled controls. After 12 weeks, the ponies were euthanased and tissues were evaluated macroscopically and using micro-computed tomography, histology and immunohistochemistry. Post-operative recovery was good in all ponies and minimal lameness was observed. After 12 weeks, the proximally located plug was partially covered (mean±standard deviation [SD] percentage surface area covered 72.5±19.7%) and the distal plug was nearly completely covered (mean±SD percentage surface area covered 98.5±6.1%) with stiff and smooth repair tissue. Histology and immunohistochemistry confirmed that the repair tissue was well connected to the native cartilage but contained negligible amounts of collagen type II and glycosaminoglycans (GAGs). The repair tissue was stiff and fibrous in nature and presented a nearly flush surface with the surrounding native cartilage distally. This approach therefore resolves a number of issues related to scaffold-based cartilage repair and compares favourably with results of several other studies in large animal models. However, long-term follow-up is needed to evaluate the true potential of this type of implant.


Assuntos
Cartilagem Articular/lesões , Implantes Experimentais , Teste de Materiais/veterinária , Alicerces Teciduais , Animais , Cartilagem Articular/cirurgia , Células Cultivadas , Feminino , Fêmur , Cavalos , Masculino , Modelos Animais , Polímeros , Poliuretanos , Engenharia Tecidual/métodos
10.
Acta Biomater ; 96: 646-661, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302295

RESUMO

Additively manufactured (AM) functionally graded porous metallic biomaterials offer unique opportunities to satisfy the contradictory design requirements of an ideal bone substitute. However, no functionally graded porous structures have ever been 3D-printed from biodegradable metals, even though biodegradability is crucial both for full tissue regeneration and for the prevention of implant-associated infections in the long term. Here, we present the first ever report on AM functionally graded biodegradable porous metallic biomaterials. We made use of a diamond unit cell for the topological design of four different types of porous structures including two functionally graded structures and two reference uniform structures. Specimens were then fabricated from pure iron powder using selective laser melting (SLM), followed by experimental and computational analyses of their permeability, dynamic biodegradation behavior, mechanical properties, and cytocompatibility. It was found that the topological design with functional gradients controlled the fluid flow, mass transport properties and biodegradation behavior of the AM porous iron specimens, as up to 4-fold variations in permeability and up to 3-fold variations in biodegradation rate were observed for the different experimental groups. After 4 weeks of in vitro biodegradation, the AM porous scaffolds lost 5-16% of their weight. This falls into the desired range of biodegradation rates for bone substitution and confirms our hypothesis that topological design could indeed accelerate the biodegradation of otherwise slowly degrading metals, like iron. Even after 4 weeks of biodegradation, the mechanical properties of the specimens (i.e., E = 0.5-2.1 GPa, σy = 8-48 MPa) remained within the range of the values reported for trabecular bone. Design-dependent cell viability did not differ from gold standard controls for up to 48 h. This study clearly shows the great potential of AM functionally graded porous iron as a bone substituting material. Moreover, we demonstrate that complex topological design permits the control of mechanical properties, degradation behavior of AM porous metallic biomaterials. STATEMENT OF SIGNIFICANCE: No functionally graded porous structures have ever been 3D-printed from biodegradable metals, even though biodegradability is crucial both for full tissue regeneration and for the prevention of implant-associated infections in the long term. Here, we present the first report on 3D-printed functionally graded biodegradable porous metallic biomaterials. Our results suggest that topological design in general, and functional gradients in particular can be used as an important tool for adjusting the biodegradation behavior of AM porous metallic biomaterials. The biodegradation rate and mass transport properties of AM porous iron can be increased while maintaining the bone-mimicking mechanical properties of these biomaterials. The observations reported here underline the importance of proper topological design in the development of AM porous biodegradable metals.


Assuntos
Materiais Biocompatíveis/química , Ferro/química , Impressão Tridimensional , Linhagem Celular , Humanos , Porosidade
11.
J Mech Behav Biomed Mater ; 79: 254-263, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335192

RESUMO

In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials with different topological designs (i.e. different unit cell types and relative densities) and material types. Porous structures were additively manufactured from Co-Cr using a selective laser melting (SLM) machine and tested under quasi-static compression. The normalized mechanical properties obtained from those structures were compared with mechanical properties available from our previous studies for porous structures made from Ti-6Al-4V and pure titanium as well as with analytical solutions. The normalized values of elastic modulus and yield stress were found to be relatively close to each other as well as in agreement with analytical solutions regardless of material type. However, the material type was found to systematically affect the mechanical properties of AM porous biomaterials in general and the post-elastic/post-yield range (plateau stress and energy absorption capacity) in particular. To put this in perspective, topological design could cause up to 10-fold difference in the mechanical properties of AM porous biomaterials while up to 2-fold difference was observed as a consequence of changing the material type.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Módulo de Elasticidade , Porosidade , Estresse Mecânico
12.
Acta Biomater ; 65: 292-304, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29127065

RESUMO

Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological design. It is, however, not clear to what extent the material type is important in determining the fatigue behavior of such biomaterials. We therefore aimed to determine the isolated and modulated effects of topological design and material type on the fatigue response of metallic meta-biomaterials fabricated with selective laser melting. Towards that end, we designed and additively manufactured Co-Cr meta-biomaterials with three types of repeating unit cells and three to four porosities per type of repeating unit cell. The AM meta-biomaterials were then mechanically tested to obtain their normalized S-N curves. The obtained S-N curves of Co-Cr meta-biomaterials were compared to those of meta-biomaterials with same topological designs but made from other materials, i.e. Ti-6Al-4V, tantalum, and pure titanium, available from our previous studies. We found the material type to be far more important than the topological design in determining the normalized fatigue strength of our AM metallic meta-biomaterials. This is the opposite of what we have found for the quasi-static mechanical properties of the same meta-biomaterials. The effects of material type, manufacturing imperfections, and topological design were different in the high and low cycle fatigue regions. That is likely because the cyclic response of meta-biomaterials depends not only on the static and fatigue strengths of the bulk material but also on other factors that may include strut roughness, distribution of the micro-pores created inside the struts during the AM process, and plasticity. STATEMENT OF SIGNIFICANCE: Meta-biomaterials are a special class of metamaterials with unusual or unprecedented combinations of mechanical, physical (e.g. mass transport), and biological properties. Topologically complex and additively manufactured meta-biomaterials have been shown to improve bone regeneration and osseointegration. The mechanical properties of such biomaterials are directly related to their topological design and material type. However, previous studies of such biomaterials have largely neglected the effects of material type, instead focusing on topological design. We show here that neglecting the effects of material type is unjustified. We studied the isolated and combined effects of topological design and material type on the normalized S-N curves of metallic bone-mimicking biomaterials and found them to be more strongly dependent on the material type than topological design.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Teste de Materiais , Estresse Mecânico , Cromo/química , Cobalto/química , Manufaturas , Microscopia Eletrônica de Varredura , Porosidade
13.
Acta Biomater ; 67: 378-392, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242158

RESUMO

An ideal bone substituting material should be bone-mimicking in terms of mechanical properties, present a precisely controlled and fully interconnected porous structure, and degrade in the human body to allow for full regeneration of large bony defects. However, simultaneously satisfying all these three requirements has so far been highly challenging. Here we present topologically ordered porous magnesium (WE43) scaffolds based on the diamond unit cell that were fabricated by selective laser melting (SLM) and satisfy all the requirements. We studied the in vitro biodegradation behavior (up to 4 weeks), mechanical properties and biocompatibility of the developed scaffolds. The mechanical properties of the AM porous WE43 (E = 700-800 MPa) scaffolds were found to fall into the range of the values reported for trabecular bone even after 4 weeks of biodegradation. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), electrochemical tests and µCT revealed a unique biodegradation mechanism that started with uniform corrosion, followed by localized corrosion, particularly in the center of the scaffolds. Biocompatibility tests performed up to 72 h showed level 0 cytotoxicity (according to ISO 10993-5 and -12), except for one time point (i.e., 24 h). Intimate contact between cells (MG-63) and the scaffolds was also observed in SEM images. The study shows for the first time that AM of porous Mg may provide distinct possibilities to adjust biodegradation profile through topological design and open up unprecedented opportunities to develop multifunctional bone substituting materials that mimic bone properties and enable full regeneration of critical-size load-bearing bony defects. STATEMENT OF SIGNIFICANCE: The ideal biomaterials for bone tissue regeneration should be bone-mimicking in terms of mechanical properties, present a fully interconnected porous structure, and exhibit a specific biodegradation behavior to enable full regeneration of bony defects. Recent advances in additive manufacturing have resulted in biomaterials that satisfy the first two requirements but simultaneously satisfying the third requirement has proven challenging so far. Here we present additively manufactured porous magnesium structures that have the potential to satisfy all above-mentioned requirements. Even after 4 weeks of biodegradation, the mechanical properties of the porous structures were found to be within those reported for native bone. Moreover, our comprehensive electrochemical, mechanical, topological, and biological study revealed a unique biodegradation behavior and the limited cytotoxicity of the developed biomaterials.


Assuntos
Materiais Biocompatíveis/farmacologia , Magnésio/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Eletroquímica , Humanos , Porosidade , Propriedades de Superfície , Alicerces Teciduais/química , Microtomografia por Raio-X
14.
Acta Biomater ; 77: 380-393, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981948

RESUMO

Additively manufactured (AM) topologically ordered porous metallic biomaterials with the proper biodegradation profile offer a unique combination of properties ideal for bone regeneration. These include a fully interconnected porous structure, bone-mimicking mechanical properties, and the possibility of fully regenerating bony defects. Most of such biomaterials are, however, based on magnesium and, thus, degrade too fast. Here, we present the first report on topologically ordered porous iron made by Direct Metal Printing (DMP). The topological design was based on a repetitive diamond unit cell. We conducted a comprehensive study on the in vitro biodegradation behavior (up to 28 days), electrochemical performance, time-dependent mechanical properties, and biocompatibility of the scaffolds. The mechanical properties of AM porous iron (E = 1600-1800 MPa) were still within the range of the values reported for trabecular bone after 28 days of biodegradation. Electrochemical tests showed up to ≈12 times higher rates of biodegradation for AM porous iron as compared to that of cold-rolled (CR) iron, while only 3.1% of weight loss was measured after 4 weeks of immersion tests. The biodegradation mechanisms were found to be topology-dependent and different between the periphery and central parts of the scaffolds. While direct contact between MG-63 cells and scaffolds revealed substantial and almost instant cytotoxicity in static cell culture, as compared to Ti-6Al-4V, the cytocompatibility according to ISO 10993 was reasonable in in vitro assays for up to 72 h. This study shows how DMP could be used to increase the surface area and decrease the grain sizes of topologically ordered porous metallic biomaterials made from metals that are usually considered to degrade too slowly (e.g., iron), opening up many new opportunities for the development of biodegradable metallic biomaterials. STATEMENT OF SIGNIFICANCE: Biodegradation in general and proper biodegradation profile in particular are perhaps the most important requirements that additively manufactured (AM) topologically ordered porous metallic biomaterials should offer in order to become the ideal biomaterial for bone regeneration. Currently, most biodegradable metallic biomaterials are based on magnesium, which degrade fast with gas generation. Here, we present the first report on topologically ordered porous iron made by Direct Metal Printing (DMP). We also conducted a comprehensive study on the biodegradation behavior, electrochemical performance, biocompatibility, and the time evolution of the mechanical properties of the implants. We show that these implants possess bone-mimicking mechanical properties, accelerated degradation rate, and reasonable cytocompatibility, opening up many new opportunities for the development of iron-based biodegradable materials.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Eletroquímica/métodos , Ferro/química , Porosidade , Ligas , Regeneração Óssea , Linhagem Celular Tumoral , Força Compressiva , Diamante , Elasticidade , Humanos , Magnésio/química , Teste de Materiais , Estresse Mecânico , Alicerces Teciduais , Titânio/química
15.
Acta Biomater ; 81: 315-327, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268917

RESUMO

Implant-associated infections (IAI) are often recurrent, expensive to treat, and associated with high rates of morbidity, if not mortality. We biofunctionalized the surface of additively manufactured volume-porous titanium implants using electrophoretic deposition (EPD) as a way to eliminate the peri-operative bacterial load and prevent IAI. Chitosan-based (Ch) coatings were incorporated with different concentrations of silver (Ag) nanoparticles or vancomycin. A full-scale in vitro and in vivo study was then performed to evaluate the antibacterial, immunogenic, and osteogenic activity of the developed implants. In vitro, Ch + vancomycin or Ch + Ag coatings completely eliminated, or reduced the number of planktonic and adherent Staphylococcus aureus by up to 4 orders of magnitude, respectively. In an in vivo tibia intramedullary implant model, Ch + Ag coatings caused no adverse immune or bone response under aseptic conditions. Following Staphylococcus aureus inoculation, Ch + vancomycin coatings reduced the implant infection rate as compared to chitosan-only coatings. Ch + Ag implants did not demonstrate antibacterial effects in vivo and even aggravated infection-mediated bone remodeling including increased osteoclast formation and inflammation-induced new bone formation. As an explanation for the poor antibacterial activity of Ch + Ag implants, it was found that antibacterial Ag concentrations were cytotoxic for neutrophils, and that non-toxic Ag concentrations diminished their phagocytic activity. This study shows the potential of EPD coating to biofunctionalize porous titanium implants with different antibacterial agents. Using this method, Ag-based coatings seem inferior to antibiotic coatings, as their adverse effects on the normal immune response could cancel the direct antibacterial effects of Ag nanoparticles. STATEMENT OF SIGNIFICANCE: Implant-associated infections (IAI) are a clinical, societal, and economical burden. Surface biofunctionalization approaches can render complex metal implants with strong local antibacterial action. The antibacterial effects of inorganic materials such as silver nanoparticles (Ag NPs) are often highlighted under very confined conditions in vitro. As a novelty, this study also reports the antibacterial, immunogenic, and osteogenic activity of Ag NP-coated additively-manufactured titanium in vivo. Importantly, it was found that the developed coatings could impair the normal function of neutrophils, the most important phagocytic cells protecting us from IAI. Not surprisingly, the Ag NP-based coatings were outperformed by an antibiotic-based coating. This emphasizes the importance of also targeting implant immune-modulatory functions in future coating strategies against IAI.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Próteses e Implantes , Prata , Staphylococcus aureus/crescimento & desenvolvimento , Titânio , Vancomicina , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Masculino , Teste de Materiais , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Prata/química , Prata/farmacologia , Titânio/química , Titânio/farmacologia , Vancomicina/química , Vancomicina/farmacologia
16.
Drug Deliv ; 25(1): 1438-1447, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29890922

RESUMO

Major hallmarks of osteoarthritis (OA) are cartilage degeneration, inflammation and osteophyte formation. COX-2 inhibitors counteract inflammation-related pain, but their prolonged oral use entails the risk for side effects. Local and prolonged administration in biocompatible and degradable drug delivery biomaterials could offer an efficient and safe treatment for the long-term management of OA symptoms. Therefore, we evaluated the disease-modifying effects and the optimal dose of polyesteramide microspheres delivering the COX-2 inhibitor celecoxib in a rat OA model. Four weeks after OA induction by anterior cruciate ligament transection and partial medial meniscectomy, 8-week-old female rats (n = 6/group) were injected intra-articular with celecoxib-loaded microspheres at three dosages (0.03, 0.23 or 0.39 mg). Unloaded microspheres served as control. During the 16-week follow-up, static weight bearing and plasma celecoxib concentrations were monitored. Post-mortem, micro-computed tomography and knee joint histology determined progression of synovitis, osteophyte formation, subchondral bone changes, and cartilage integrity. Systemic celecoxib levels were below the detection limit 6 days upon delivery. Systemic and local adverse effects were absent. Local delivery of celecoxib reduced the formation of osteophytes, subchondral sclerosis, bone cysts and calcified loose bodies, and reduced synovial inflammation, while cartilage histology was unaffected. Even though the effects on pain could not be evualated directly in the current model, our results suggest the application of celecoxib-loaded microspheres holds promise as novel, safe and effective treatment for inflammation and pain in OA.


Assuntos
Osso e Ossos/diagnóstico por imagem , Celecoxib/farmacologia , Cistos/tratamento farmacológico , Preparações de Ação Retardada/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Animais , Ligamento Cruzado Anterior/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Modelos Animais de Doenças , Feminino , Osteófito/tratamento farmacológico , Ratos
17.
Int J Oral Maxillofac Surg ; 36(10): 877-83, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17616340

RESUMO

The principles of orthopaedic distraction osteogenesis (DO) have been successfully applied to the craniofacial skeleton, but the latency time, rate and rhythm of distraction, and length of the consolidation period that are optimal for long-bone distraction may be suboptimal for craniofacial DO. The aim of this study was to provide recommendations for optimal distraction parameters in animal experimental research on craniofacial DO. The data used were from studies, added to the PubMed database between 1 January 1973 and 1 January 2007, on the outcome of DO resulting from variations in a single distraction parameter while standardizing the other distraction parameters. Although experimental animal group sizes were rather small, especially in those studies that used large animals, and both skeletally mature and immature animals were used, the (in most cases quantitative) data provided useful information on the optimal parameters in craniofacial DO. A latency period may not be necessary at all. Distraction should be performed at a rate of 1mm/day (this may be halved when small animals such as rats are used) preferably with a continuous rhythm, followed by a consolidation period of 6-8 weeks. These recommendations can be used as basic guidelines for further animal experimental studies on craniofacial DO.


Assuntos
Mandíbula/cirurgia , Maxila/cirurgia , Modelos Animais , Osteogênese por Distração/métodos , Animais , Mandíbula/irrigação sanguínea , Mandíbula/crescimento & desenvolvimento , Maxila/irrigação sanguínea , Maxila/crescimento & desenvolvimento , Guias de Prática Clínica como Assunto , Tempo de Reação , Fatores de Tempo , Resultado do Tratamento
18.
ACS Appl Mater Interfaces ; 9(2): 1293-1304, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28001358

RESUMO

Enhanced bone tissue regeneration and improved osseointegration are among the most important goals in design of multifunctional orthopedic biomaterials. In this study, we used additive manufacturing (selective laser melting) to develop multifunctional porous nitinol that combines superelasticity with a rationally designed microarchitecture and biofunctionalized surface. The rational design based on triply periodic minimal surfaces aimed to properly adjust the pore size, increase the surface area (thereby amplifying the effects of surface biofunctionalization), and resemble the curvature characteristics of trabecular bone. The surface of additively manufactured (AM) porous nitinol was biofunctionalized using polydopamine-immobilized rhBMP2 for better control of the release kinetics. The actual morphological properties of porous nitinol measured by microcomputed tomography (e.g., open/close porosity, and surface area) closely matched the design values. The superelasticity originated from the austenite phase formed in the nitinol porous structure at room temperature. Polydopamine and rhBMP2 signature peaks were confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy tests. The release of rhBMP2 continued until 28 days. The early time and long-term release profiles were found to be adjustable independent of each other. In vitro cell culture showed improved cell attachment, cell proliferation, cell morphology (spreading, spindle-like shape), and cell coverage as well as elevated levels of ALP activity and increased calcium content for biofunctionalized surfaces as compared to as-manufactured specimens. The demonstrated functionalities of porous nitinol could be used as a basis for deployable orthopedic implants with rationally designed microarchitectures that maximize bone tissue regeneration performance by release of biomolecules with adjustable and well-controlled release profiles.


Assuntos
Ligas/química , Materiais Biocompatíveis , Teste de Materiais , Porosidade , Propriedades de Superfície , Titânio , Microtomografia por Raio-X
19.
Acta Biomater ; 53: 572-584, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28213101

RESUMO

Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone-substituting biomaterials. STATEMENT OF SIGNIFICANCE: Bone-substituting biomaterials aim to mimic bone properties. Although mimicking some of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass transport properties. The topology of the developed biomaterials resembles that of trabecular bone including a mean curvature close to zero. Moreover, the developed biomaterials show an unusual combination of low elastic modulus to avoid stress shielding and high strength to provide mechanical support. The fatigue resistance of the developed biomaterials is also exceptionally high, while their permeability is in the range of values reported for bone.


Assuntos
Materiais Biomiméticos/síntese química , Substitutos Ósseos/síntese química , Metais/química , Titânio/química , Ligas , Força Compressiva , Módulo de Elasticidade , Permeabilidade , Porosidade , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
20.
ACS Appl Mater Interfaces ; 9(31): 25691-25699, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28696671

RESUMO

Implant-associated infections are notoriously difficult to treat and may even result in amputation and death. The first few days after surgery are the most critical time to prevent those infections, preferably through full eradication of the micro-organisms entering the body perioperatively. That is particularly important for patients with a compromised immune system such as orthopedic oncology patients, as they are at higher risk for infection and complications. Full eradication of bacteria is, especially in a biofilm, extremely challenging due to the toxicity barrier that prevents delivery of high doses of antibacterial agents. This study aimed to use the potential synergistic effects of multiple antibacterial agents to prevent the use of toxic levels of these agents and achieve full eradication of planktonic and adherent bacteria. Silver ions and vancomycin were therefore simultaneously delivered from additively manufactured highly porous titanium implants with an extremely high surface area incorporating a bactericidal coating made from chitosan and gelatin applied by electrophoretic deposition (EPD). The presence of the chitosan/gelatin (Ch+Gel) coating, Ag, and vancomycin (Vanco) was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The release of vancomycin and silver ions continued for at least 21 days as measured by inductively coupled plasma (ICP) and UV-spectroscopy. Antibacterial behavior against Staphylococcus aureus, both planktonic and in biofilm, was evaluated for up to 21 days. The Ch+Gel coating showed some bactericidal behavior on its own, while the loaded hydrogels (Ch+Gel+Ag and Ch+Gel+Vanco) achieved full eradication of both planktonic and adherent bacteria without causing significant levels of toxicity. Combining silver and vancomycin improved the release profiles of both agents and revealed a synergistic behavior that further increased the bactericidal effects.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis , Materiais Revestidos Biocompatíveis , Plâncton , Prata , Infecções Estafilocócicas , Staphylococcus aureus , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA