Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 39(11): 2919-2936, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34890018

RESUMO

PURPOSE: In amorphous solid dispersions (ASDs), the chemical potential of a drug can be reduced due to mixing with the polymer in the solid matrix, and this can lead to reduced drug release when the polymer is insoluble in the dissolution media. If both the drug and the polymer composing an ASD are ionizable, drug release from the ASD becomes pH-dependent. The goal of this study was to gain insights into the pH-dependent solubility suppression from ASD formulations. METHODS: The maximum release of clotrimazole, a weakly basic drug, from ASDs formulated with insoluble and pH-responsive polymers, was determined as a function of solution pH. Drug-polymer interactions in ASDs were probed using melting point depression, moisture sorption, and solid-state Nuclear Magnetic Resonance spectroscopy (SSNMR) measurements. RESULTS: The extent of solubility suppression was dependent on polymer type and drug loading. The strength of drug-polymer interactions was found to correlate well with the degree of solubility suppression. For the same ASD, the degree of solubility suppression was nearly constant across the solution pH range studied, suggesting that polymer-drug interactions in residual ASD solids was independent of solution pH. The total drug release agrees with the Henderson-Hasselbalch relationship if the suppressed amorphous solubility of the free drug is independent of solution pH. CONCLUSIONS: The mechanism of solubility suppression at different solution pHs appeared to be drug-polymer interactions in the solid-state, where the concentration of the free drug remains the same at variable pHs and the total drug concentration follows the Henderson-Hasselbalch relationship.


Assuntos
Polímeros , Solubilidade , Liberação Controlada de Fármacos , Polímeros/química , Composição de Medicamentos/métodos
2.
J Pharm Sci ; 96(2): 264-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17051585

RESUMO

A method to detect and quantify a small amount crystalline material within a liquid solution of solubilized material is described. 19F CP-MAS ssNMR was investigated as a technique to detect low levels (0.2 mg/g) of crystalline sodium (2R)-7-{3-[2-chloro-4-(2,2,2-trifluoroethoxy)phenoxy]propoxy}-2-methyl-3,4-dihydro-2H-chromane-2-carboxylate (I) within a solid mixture (with microcrystalline cellulose) and a slurry with a liquid vehicle (capric and caprylic acid triglycerides). The results demonstrate that the area of the 19F CP/MAS signal obtained in 25 min at 25 degrees C is linearly dependent (R2=0.997) on the mass of I within the ssNMR rotor. Slopes of CP-MAS peak area versus mass of I in the rotor were nearly identical for the solid mixture and slurry suspension. Signal-to-noise ratio for the low potency slurry suggest detection and quantitation of 0.1 mg of crystalline I in the rotor, corresponding to 2 mg/g of crystalline material within the slurry suspension.


Assuntos
Benzopiranos/análise , Celulose/química , Espectroscopia de Ressonância Magnética/métodos , Éteres Fenílicos/análise , Polietilenoglicóis/química , Triglicerídeos/química , Benzopiranos/química , Cromatografia Líquida de Alta Pressão , Cristalização , Veículos Farmacêuticos , Éteres Fenílicos/química , Solubilidade
3.
J Pharm Sci ; 102(6): 1915-1923, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23580396

RESUMO

To improve the dissolution and hence the oral bioavailability, amorphous felodipine (FEL) solid dispersions (SDs) with Kollidon® VA 64 (PVP/VA) were prepared. Hot-melt extrusion was employed with an extruding temperature below the melting point (Tm ) of FEL. X-ray powder diffraction (XRPD) and (13) C CP/MAS nuclear magnetic resonance (NMR) measurements show that the extrudates are amorphous. The intermolecular interaction between FEL and PVP/VA in SDs was investigated by Fourier transform infrared spectroscopy, (15) N CP/MAS NMR, and (1) H high-resolution MAS NMR. Furthermore, a single glass transition temperature (Tg ) was detected by differential scanning calorimetry in addition to a single (1) H T1 or T1rho relaxation time detected by (13) C NMR signals. These results confirm that the extrudates contain FEL dispersed into the polymer matrix at a molecular level with no detectable phase separation. This molecular-scale mixing results in a significantly faster dissolution rate compared with the pure crystalline FEL. Additionally, the molecular-scale mixing prevents the amorphous drug from recrystallizing even after being stored at 40°C/75% Relative Humidity for 2 months.


Assuntos
Anti-Hipertensivos/química , Composição de Medicamentos/métodos , Felodipino/química , Excipientes Farmacêuticos/química , Povidona/química , Cristalização , Estabilidade de Medicamentos , Temperatura Alta , Espectroscopia de Ressonância Magnética , Solubilidade , Temperatura de Transição , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA