Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 16(33): e2002861, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32583981

RESUMO

A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.


Assuntos
Lipossomos , Nanopartículas , Hemodinâmica , Humanos , Microvasos , Polimerização
2.
ACS Nano ; 16(8): 11769-11780, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35758934

RESUMO

Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Polietilenoglicóis , Anticorpos , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinas de mRNA
3.
EBioMedicine ; 74: 103699, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34801965

RESUMO

COVID-19 has become a major cause of global mortality and driven massive health and economic disruptions. Mass global vaccination offers the most efficient pathway towards ending the pandemic. The development and deployment of first-generation COVID-19 vaccines, encompassing mRNA or viral vectors, has proceeded at a phenomenal pace. Going forward, nanoparticle-based vaccines which deliver SARS-CoV-2 antigens will play an increasing role in extending or improving vaccination outcomes against COVID-19. At present, over 26 nanoparticle vaccine candidates have advanced into clinical testing, with ∼60 more in pre-clinical development. Here, we discuss the emerging promise of nanotechnology in vaccine design and manufacturing to combat SARS-CoV-2, and highlight opportunities and challenges presented by these novel vaccine platforms.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina/imunologia , Lipossomos/farmacologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Humanos , Nanopartículas , Pandemias/prevenção & controle , Desenvolvimento de Vacinas/métodos
4.
Adv Healthc Mater ; 10(10): e2002142, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33690985

RESUMO

Despite remarkable successes of immunization in protecting public health, safe and effective vaccines against a number of life-threatening pathogens such as HIV, ebola, influenza, and SARS-CoV-2 remain urgently needed. Subunit vaccines can avoid potential toxicity associated with traditional whole virion-inactivated and live-attenuated vaccines; however, the immunogenicity of subunit vaccines is often poor. A facile method is here reported to produce lipid nanoparticle subunit vaccines that exhibit high immunogenicity and elicit protection against influenza virus. Influenza hemagglutinin (HA) immunogens are functionalized on the surface of liposomes via stable metal chelation chemistry, using a scalable advanced microfluidic mixing technology (NanoAssemblr). Immunization of mice with HA-liposomes elicits increased serum antibody titers and superior protection against highly pathogenic virus challenge compared with free HA protein. HA-liposomal vaccines display enhanced antigen deposition into germinal centers within the draining lymph nodes, driving increased HA-specific B cell, and follicular helper T cell responses. This work provides mechanistic insights into highly protective HA-liposome vaccines and informs the rational design and rapid production of next generation nanoparticle subunit vaccines.


Assuntos
COVID-19 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Centro Germinativo , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Lipossomos , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , SARS-CoV-2 , Linfócitos T Auxiliares-Indutores
5.
Vaccine ; 38(10): 2368-2377, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32035709

RESUMO

BACKGROUND: Seasonal influenza vaccination with a standard trivalent influenza vaccine (TIV) induces a modest, and cross-reactive, Fc functional antibody response in older adults. Recent improvements to influenza vaccines include a quadrivalent influenza vaccine (QIV) and a TIV adjuvanted with the squalene-based oil-in-water emulsion MF59. METHODS: Pre- and post-vaccination serum samples from older adults vaccinated with QIV (n = 27) and adjuvanted TIV (n = 44) were studied using hemagglutination inhibition (HAI) assays and dimeric Fc-gamma receptor IIIa binding ELISAs, as a surrogate of antibody-dependent cellular cytotoxicity (ADCC). RESULTS: We found that the unadjuvanted QIV elicited a stronger HAI response against the H1N1 vaccine virus than the adjuvanted TIV. Post-vaccination levels of HA-specific ADCC antibodies were similar for older adults vaccinated with QIV and adjuvanted TIV. The ADCC response to influenza vaccination was largely determined by pre-vaccination or baseline levels of these antibodies, with older adults with low baseline levels of ADCC activity demonstrating greater post-vaccination rises. CONCLUSIONS: In this cohort of community-dwelling older adults, the QIV was at least as good as the adjuvanted TIV in the induction of ADCC and HAI responses. Further studies on how these antibody responses translate to efficacy in preventing influenza infections are warranted.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Formação de Anticorpos , Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Influenza Humana , Idoso , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza/classificação , Influenza Humana/prevenção & controle , Polissorbatos/administração & dosagem , Receptores de IgG/imunologia , Austrália do Sul , Esqualeno/administração & dosagem , Vacinação
6.
Adv Healthc Mater ; 8(9): e1801607, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30868751

RESUMO

Low-fouling or "stealth" particles composed of poly(ethylene glycol) (PEG) display a striking ability to evade phagocytic cell uptake. However, functionalizing them for specific targeting is challenging. To address this challenge, stealth PEG particles prepared by a mesoporous silica templating method are functionalized with bispecific antibodies (BsAbs) to obtain PEG-BsAb particles via a one-step binding strategy for cell and tumor targeting. The dual specificity of the BsAbs-one arm binds to the PEG particles while the other targets a cell antigen (epidermal growth factor receptor, EGFR)-is exploited to modulate the number of targeting ligands per particle. Increasing the BsAb incubation concentration increases the amount of BsAb tethered to the PEG particles and enhances targeting and internalization into breast cancer cells overexpressing EGFR. The degree of BsAb functionalization does not significantly reduce the stealth properties of the PEG particles ex vivo, as assessed by their interactions with primary human blood granulocytes and monocytes. Although increasing the BsAb amount on PEG particles does not lead to the expected improvement in tumor accumulation in vivo, BsAb functionalization facilitates tumor cell uptake of PEG particles. This work highlights strategies to balance evading nonspecific clearance pathways, while improving tumor targeting and accumulation.


Assuntos
Anticorpos Biespecíficos/química , Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis/química , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Receptores ErbB/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA