Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 29(13): 1625-1642, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862935

RESUMO

A promising component of biomaterial constructs for neural tissue engineering are electrospun fibers, which differentiate stem cells and neurons as well as direct neurite growth. However, means of protecting neurons, glia, and stem cells seeded on electrospun fibers between lab and surgical suite have yet to be developed. Here we report an effort to accomplish this using cell-encapsulating hydrogel fibers made by interfacial polyelectrolyte complexation (IPC). IPC-hydrogel fibers were created by interfacing acid-soluble chitosan (AsC) and cell-containing alginate and spinning them on bundles of aligned electrospun fibers. Primary spinal astrocytes, cortical neurons, or L929 fibroblasts were mixed into alginate hydrogels prior to IPC-fiber spinning. The viability of each cell type was assessed at 30 min, 4 h, 1 d, and 7 d after encapsulation in IPC hydrogels. Some neurons were encapsulated in IPC-hydrogel fibers made from water-soluble chitosan (WsC). Neurons were also stained with Tuj1 and assessed for neurite extension. Neuron survival in AsC-fibers was worse than astrocytes in AsC-fibers (p < 0.05) and neurons in WsC-fibers (p < 0.05). As expected, neuron and glia survival was worse than L929 fibroblasts (p < 0.05). Neurons in IPC-hydrogel fibers fabricated with WsC extended neurites robustly, while none in AsC fibers did. Neurons remaining inside IPC-hydrogel fibers extended neurites inside them, while others de-encapsulated, extending neurites on electrospun fibers, which did not fully integrate with IPC-hydrogel fibers. This study demonstrates that primary neurons and astrocytes can be encapsulated in IPC-hydrogel fibers at good percentages of survival. IPC hydrogel technology may be a useful tool for encapsulating neural and other cells on electrospun fiber scaffolds.


Assuntos
Hidrogéis/química , Nanofibras/química , Tecido Nervoso/química , Alicerces Teciduais/química , Alginatos/química , Animais , Astrócitos/citologia , Materiais Biocompatíveis/química , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Quitosana/química , Fibroblastos/citologia , Humanos , Tecido Nervoso/metabolismo , Neuritos/química , Neurônios/citologia , Tamanho da Partícula , Ratos Sprague-Dawley , Propriedades de Superfície , Engenharia Tecidual/métodos
2.
PLoS One ; 12(7): e0180427, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28672008

RESUMO

Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.


Assuntos
Nervo Coclear/fisiologia , Células-Tronco Embrionárias/citologia , Nanofibras , Regeneração Nervosa/fisiologia , Neurônios/citologia , Engenharia Tecidual , Animais , Materiais Biocompatíveis , Tronco Encefálico/fisiologia , Diferenciação Celular , Transplante de Células , Surdez/terapia , Feminino , Proteínas de Fluorescência Verde/genética , Cobaias , Humanos , Masculino
3.
J Biomed Mater Res A ; 104(4): 966-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26662937

RESUMO

One obstacle in neural repair is facilitating axon growth long enough to reach denervated targets. Recent studies show that axonal growth is accelerated by applying tension to bundles of neurites, and additional studies show that mechanical tension is critical to all neurite growth. However, no studies yet describe how individual neurons respond to tensile forces applied to cell bodies and neurites simultaneously; neither do any test motor neurons, a phenotype critical to neural repair. Here we examine the growth of dissociated motor neurons on stretchable substrates. E15 spinal motor neurons were cultured on poly-lactide-co-glycolide films stretched at 4.8, 9.6, or 14.3 mm day(-1). Morphological analysis revealed that substrate stretching has profound effects on developing motor neurons. Stretching increases major neurite length; it also forces neuritogenesis to occur nearest poles of the cell closest to the sources of tension. Stretching also reduces the number of neurites per neuron. These data show that substrate stretching affects neuronal morphology by specifying locations on the cell where neuritogenesis occurs and favoring major neurite growth at the expense of minor neurites. These results serve as a building block for development of new techniques to control and improve the growth of neurons for nerve repair purposes.


Assuntos
Materiais Biocompatíveis/química , Ácido Láctico/química , Neurônios Motores/citologia , Neuritos/metabolismo , Neurogênese , Ácido Poliglicólico/química , Animais , Células Cultivadas , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Neuritos/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA