Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Glob Chang Biol ; 30(8): e17470, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149882

RESUMO

Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.


Assuntos
Oligoquetos , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/efeitos adversos , Animais , Solo/química , Microplásticos/análise , Microplásticos/toxicidade , Gases de Efeito Estufa/análise , Nanopartículas/análise , Produtos Agrícolas/crescimento & desenvolvimento
2.
Molecules ; 26(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498295

RESUMO

The field of veterinary medicine needs new solutions to address the current challenges of antibiotic resistance and the need for increased animal production. In response, a multitude of delivery systems have been developed in the last 20 years in the form of engineered nanoparticles (ENPs), a subclass of which are polymeric, biodegradable ENPs, that are biocompatible and biodegradable (pbENPs). These platforms have been developed to deliver cargo, such as antibiotics, vaccines, and hormones, and in general, have been shown to be beneficial in many regards, particularly when comparing the efficacy of the delivered drugs to that of the conventional drug applications. However, the fate of pbENPs developed for veterinary applications is poorly understood. pbENPs undergo biotransformation as they are transferred from one ecosystem to another, and these transformations greatly affect their impact on health and the environment. This review addresses nanoparticle fate and impact on animals, the environment, and humans from a One Health perspective.


Assuntos
Plásticos Biodegradáveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Medicina Veterinária/tendências , Animais , Plásticos Biodegradáveis/uso terapêutico , Ecossistema , Nanopartículas/uso terapêutico , Saúde Única , Poluentes Químicos da Água/efeitos adversos
3.
Environ Sci Technol ; 51(21): 12264-12273, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29067803

RESUMO

Triclosan (TCS), a broad-spectrum antimicrobial, is used in commercial toothpastes with reported dental benefits. Our studies on 22 popular manual toothbrushes in the U.S. showed that common toothbrush head components can accumulate substantial amounts of TCS after brushing with TCS-formulated toothpastes (TCS-TPs). After simulated 3-month brushing with a commercial best-selling TCS-TP, over one third of the adults' toothbrushes showed a cumulative TCS uptake of 21-37.5 mg, equivalent to 7-12.5 doses of the TCS used per brushing. Similar results were observed on children's toothbrushes with small pea-size heads. Elastomer components were found to be the main contributor while both nylon bristles and elastomers could act as absorptive sinks for TCS during brushing. Studies on six different TCS-TPs containing 0.3 wt% TCS showed similar profiles of TCS accumulation. The absorbed TCS was gradually released into toothpaste slurries after switching to TCS-free alternatives. Release of TCS, which typically measured at a fraction (<75%) of the standard dose using the TCS-TPs, continued for over 2 weeks and occurred most rapidly in peroxide-containing "whitening" toothpastes, followed by alkaline and surfactant-rich toothpastes. The accumulating effect was not exclusive to TCS but was commonly observed on several chemicals identified in TCS-TPs and a range of regular toothpastes.


Assuntos
Elastômeros , Cremes Dentais , Triclosan , Poluentes da Água , Humanos , Nylons , Escovação Dentária
4.
Part Fibre Toxicol ; 14(1): 40, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29029643

RESUMO

BACKGROUND: Engineered nanomaterials (ENMs) are increasingly added to foods to improve their quality, sensory appeal, safety and shelf-life. Human exposure to these ingested ENMs (iENMS) is inevitable, yet little is known of their hazards. To assess potential hazards, efficient in vitro methodologies are needed to evaluate particle biokinetics and toxicity. These methodologies must account for interactions and transformations of iENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Here we report the development and application of an integrated methodology consisting of three interconnected stages: 1) assessment of iENM-food interactions (food matrix effect) using model foods; 2) assessment of gastrointestinal transformations of the nano-enabled model foods using a three-stage GIT simulator; 3) assessment of iENMs biokinetics and cellular toxicity after exposure to simulated GIT conditions using a triculture cell model. As a case study, a model food (corn oil-in-water emulsion) was infused with Fe2O3 (Iron(III) oxide or ferric oxide) ENMs and processed using this three-stage integrated platform to study the impact of food matrix and GIT effects on nanoparticle biokinetics and cytotoxicity . METHODS: A corn oil in phosphate buffer emulsion was prepared using a high speed blender and high pressure homogenizer. Iron oxide ENM was dispersed in water by sonication and combined with the food model. The resulting nano-enabled food was passed through a three stage (mouth, stomach and small intestine) GIT simulator. Size distributions of nano-enabled food model and digestae at each stage were analyzed by DLS and laser diffraction. TEM and confocal imaging were used to assess morphology of digestae at each phase. Dissolution of Fe2O3 ENM along the GIT was assessed by ICP-MS analysis of supernatants and pellets following centrifugation of digestae. An in vitro transwell triculture epithelial model was used to assess biokinetics and toxicity of ingested Fe2O3 ENM. Translocation of Fe2O3 ENM was determined by ICP-MS analysis of cell lysates and basolateral compartment fluid over time. RESULTS: It was demonstrated that the interactions of iENMs with food and GIT components influenced nanoparticle fate and transport, biokinetics and toxicological profile. Large differences in particle size, charge, and morphology were observed in the model food with and without Fe2O3 and among digestae from different stages of the simulated GIT (mouth, stomach, and small intestine). Immunoflorescence and TEM imaging of the cell culture model revealed markers and morphology of small intestinal epithelium including enterocytes, goblet cells and M cells. Fe2O3 was not toxic at concentrations tested in the digesta. In biokinetics studies, translocation of Fe2O3 after 4 h was <1% and ~2% for digesta with and without serum, respectively, suggesting that use of serum proteins alters iENMs biokinetics and raises concerns about commonly-used approaches that neglect iENM - food-GIT interactions or dilute digestae in serum-containing media. CONCLUSIONS: We present a simple integrated methodology for studying the biokinetics and toxicology of iENMs, which takes into consideration nanoparticle-food-GIT interactions. The importance of food matrix and GIT effects on biointeractions was demonstrated, as well as the incorporation of these critical factors into a cellular toxicity screening model. Standardized food models still need to be developed and used to assess the effect of the food matrix effects on the fate and bioactivity of iENMs since commercial foods vary considerably in their compositions and structures.


Assuntos
Ingestão de Alimentos , Compostos Férricos/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Nanoestruturas/toxicidade , Nanotecnologia , Toxicologia/métodos , Administração Oral , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Digestão , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Trato Gastrointestinal/química , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Modelos Anatômicos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Reprodutibilidade dos Testes , Medição de Risco , Solubilidade , Propriedades de Superfície , Fatores de Tempo , Toxicocinética
5.
Environ Sci Technol ; 49(7): 4317-24, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25775209

RESUMO

Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.


Assuntos
Anti-Infecciosos/análise , Nanopartículas Metálicas/análise , Prata/química , Análise Espectral Raman/métodos , Anti-Infecciosos/química , Citratos/química , Corantes/química , Dimetilditiocarbamato/química , Humanos , Nanopartículas Metálicas/química , Polivinil/química , Pirrolidinas/química , Compostos de Prata/química
6.
J Hazard Mater ; 469: 134018, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492402

RESUMO

Microplastics (MPs) contamination of marine environments poses a significant ecological risk, although impacts on species' realized niche spaces remain unclear. The current study investigates MPs distribution across pelagic habitats, benthic sediments, and key biota in the South Yellow Sea, China. Samples were collected via trawling across estuarine transects, and tissues were digested to extract MPs. Density gradient separations and vacuum-filtrations prepared particle extracts for ATR-FTIR and Micro-Raman spectroscopic characterization. Sampling along industrialized river transects reveals ubiquitous plastic particle presence, with concentrations ranging from 0 to 51.68 item/L seawater. Contamination levels reach their peak at station estuaries before dispersing offshore, indicating significant waste stream inputs. Importantly, MPs detected in demersal and pelagic fish species, as well as in bivalves, confirm exposure across trophic niches. Gastrointestinal tract and gill concentrations reached 0.6 items/g fresh tissue, reflecting significant biological uptake and in vivo retention. The greatest population of organisms occurred adjacent to polluted areas. Overall, distribution of MPs from polluted rivers to coastal food webs was evident, suggesting potential negative impacts on key ecological functions in this system. These findings underscore the need to develop upstream mitigation efforts so as to minimize MPs contamination in areas where nearshore and offshore niches intersect.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Monitoramento Ambiental/métodos , Água do Mar/química , Estuários , Ecossistema , China , Poluentes Químicos da Água/análise
7.
ACS Nano ; 18(27): 18071-18084, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38924759

RESUMO

Concern over nano- and microplastic contamination of terrestrial ecosystems has been increasing. However, little is known about the effect of nano- and microplastics on the response of terrestrial ecosystems already under biotic stress. Here, nano- and microplastics at 150-500 mg·kg-1 were exposed to tomatoes (Solanum lycopersicum L.), and the results demonstrate that the presence of nano- and microplastics increased the occurrence of bacterial wilt caused by Ralstonia solanacearum in tomatoes as a function of contaminant concentration, surface modification, and size. Our work shows that nanoplastics (30 nm, 250 mg·kg-1) increased the disease incidence by 2.19-fold. The disease severities in amino- and carboxyl-modified nanoplastic treatments were 30.4 and 21.7% higher than that in unmodified nanoplastic treatment, respectively. The severity of disease under the influence of different-sized nano- and microplastic treatments followed the order 30 > 100 nm > 1 > 50 µm. Mechanistically, nanoplastics disrupted the structure of the tomato rhizosphere soil bacterial community and suppressed the induced systemic resistance in tomato; nanoplastics in planta decreased the salicylic acid and jasmonic acid content in tomatoes, thus inhibiting systemic acquired resistance; and microplastics increased the soil water retention, leading to increased pathogen abundance in the rhizosphere. Additionally, the leachates from nano- and microplastics had no effect on disease occurrence or the growth of tomatoes. Our findings highlight a potential risk of nano- and microplastic contamination to agriculture sustainability and food security.


Assuntos
Microplásticos , Nanopartículas , Doenças das Plantas , Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Nanopartículas/química , Ralstonia solanacearum/efeitos dos fármacos , Rizosfera , Tamanho da Partícula , Poluentes do Solo/toxicidade
8.
ACS Appl Mater Interfaces ; 16(20): 25740-25756, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722759

RESUMO

Micro- and nano-plastics (NPs) are found in human milk, blood, tissues, and organs and associate with aberrant health outcomes including inflammation, genotoxicity, developmental disorders, onset of chronic diseases, and autoimmune disorders. Yet, interfacial interactions between plastics and biomolecular systems remain underexplored. Here, we have examined experimentally, in vitro, in vivo, and by computation, the impact of polystyrene (PS) NPs on a host of biomolecular systems and assemblies. Our results reveal that PS NPs essentially abolished the helix-content of the milk protein ß-lactoglobulin (BLG) in a dose-dependent manner. Helix loss is corelated with the near stoichiometric formation of ß-sheet elements in the protein. Structural alterations in BLG are also likely responsible for the nanoparticle-dependent attrition in binding affinity and weaker on-rate constant of retinol, its physiological ligand (compromising its nutritional role). PS NP-driven helix-to-sheet conversion was also observed in the amyloid-forming trajectory of hen egg-white lysozyme (accelerated fibril formation and reduced helical content in fibrils). Caenorhabditis elegans exposed to PS NPs exhibited a decrease in the fluorescence of green fluorescent protein-tagged dopaminergic neurons and locomotory deficits (akin to the neurotoxin paraquat exposure). Finally, in silico analyses revealed that the most favorable PS/BLG docking score and binding energies corresponded to a pose near the hydrophobic ligand binding pocket (calyx) of the protein where the NP fragment was found to make nonpolar contacts with side-chain residues via the hydrophobic effect and van der Waals forces, compromising side chain/retinol contacts. Binding energetics indicate that PS/BLG interactions destabilize the binding of retinol to the protein and can potentially displace retinol from the calyx region of BLG, thereby impairing its biological function. Collectively, the experimental and high-resolution in silico data provide new insights into the mechanism(s) by which PS NPs corrupt the bimolecular structure and function, induce amyloidosis and onset neuronal injury, and drive aberrant physiological and behavioral outcomes.


Assuntos
Caenorhabditis elegans , Lactoglobulinas , Muramidase , Animais , Muramidase/química , Muramidase/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Caenorhabditis elegans/metabolismo , Poliestirenos/química , Nanopartículas/química , Vitamina A/química , Vitamina A/metabolismo , Humanos , Homeostase/efeitos dos fármacos , Plásticos/química
9.
J Agric Food Chem ; 71(44): 16493-16503, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37890448

RESUMO

Phosphorus (P) is critical for crop production but has a high nutrient use inefficiency. Tomato was grown in soil amended with five P-sources, used as-is, or embedded within a biodegradable polymer, polyhydroxyalkanoate (PHA). Correlation analysis identified treatments that maintain plant growth, improve bioavailable soil P, and reduce P loss. Three performance classes were identified: (i) micro- and nanohydroxyapatite, which did not increase bioavailable P, plant P-uptake, or change P in runoff/leaching compared to controls; (ii) monocalcium phosphate (MCP), dicalcium phosphate (DCP), calcium pyrophosphate nanoparticles (CAP), and PHA-MCP that increased P-uptake and/or bioavailable P but also increased P loss in runoff/leaching; and (iii) PHA-DCP and PHA-CAP, where increased bioavailable P and plant P-uptake were achieved with minimal P loss in runoff/leaching. In addition to identifying treatments that maintain plant growth, increase bioavailable P, and minimize nutrient loss, correlation plots also revealed that (i) bioavailable P was a good indicator of plant P-uptake; (ii) leached P could be predicted from water solubility; and (iii) P loss through runoff versus leaching showed similar trends. This study highlights that biopolymers can promote plant P-uptake and improve bioavailable soil P, with implications for mitigating the negative environmental impacts of P loss from agricultural systems.


Assuntos
Fósforo , Solo , Agricultura , Polímeros , Fertilizantes
10.
Microbiome ; 11(1): 266, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008755

RESUMO

BACKGROUND: Many studies have investigated how nanoplastics (NPs) exposure mediates nerve and intestinal toxicity through a dysregulated brain-gut axis interaction, but there are few studies aimed at alleviating those effects. To determine whether and how vitamin D can impact that toxicity, fish were supplemented with a vitamin D-low diet and vitamin D-high diet. RESULTS: Transmission electron microscopy (TEM) showed that polystyrene nanoplastics (PS-NPs) accumulated in zebrafish brain and intestine, resulting in brain blood-brain barrier basement membrane damage and the vacuolization of intestinal goblet cells and mitochondria. A high concentration of vitamin D reduced the accumulation of PS-NPs in zebrafish brain tissues by 20% and intestinal tissues by 58.8% and 52.2%, respectively, and alleviated the pathological damage induced by PS-NPs. Adequate vitamin D significantly increased the content of serotonin (5-HT) and reduced the anxiety-like behavior of zebrafish caused by PS-NPs exposure. Virus metagenome showed that PS-NPs exposure affected the composition and abundance of zebrafish intestinal viruses. Differentially expressed viruses in the vitamin D-low and vitamin D-high group affected the secretion of brain neurotransmitters in zebrafish. Virus AF191073 was negatively correlated with neurotransmitter 5-HT, whereas KT319643 was positively correlated with malondialdehyde (MDA) content and the expression of cytochrome 1a1 (cyp1a1) and cytochrome 1b1 (cyp1b1) in the intestine. This suggests that AF191073 and KT319643 may be key viruses that mediate the vitamin D reduction in neurotoxicity and immunotoxicity induced by PS-NPs. CONCLUSION: Vitamin D can alleviate neurotoxicity and immunotoxicity induced by PS-NPs exposure by directionally altering the gut virome. These findings highlight the potential of vitamin D to alleviate the brain-gut-virome disorder caused by PS-NPs exposure and suggest potential therapeutic strategies to reduce the risk of NPs toxicity in aquaculture, that is, adding adequate vitamin D to diet. Video Abstract.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Peixe-Zebra , Vitamina D/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Microplásticos/toxicidade , Microplásticos/metabolismo , Serotonina/metabolismo , Viroma , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Encéfalo , Citocromos/metabolismo
11.
ACS Nano ; 16(5): 8190-8204, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35507640

RESUMO

In animal species, the brain-gut axis is a complex bidirectional network between the gastrointestinal (GI) tract and the central nervous system (CNS) consisting of numerous microbial, immune, neuronal, and hormonal pathways that profoundly impact organism development and health. Although nanoplastics (NPs) have been shown to cause intestinal and neural toxicity in fish, the role of the neurotransmitter and intestinal microbiota interactions in the underlying mechanism of toxicity, particularly at environmentally relevant contaminant concentrations, remains unknown. Here, the effect of 44 nm polystyrene nanoplastics (PS-NPs) on the brain-intestine-microbe axis and embryo-larval development in zebrafish (Danio rerio) was investigated. Exposure to 1, 10, and 100 µg/L PS-NPs for 30 days inhibited growth and adversely affected inflammatory responses and intestinal permeability. Targeted metabolomics analysis revealed an alteration of 42 metabolites involved in neurotransmission. The content of 3,4-dihydroxyphenylacetic acid (DOPAC; dopamine metabolite formed by monoamine oxidase activity) was significantly decreased in a dose-dependent manner after PS-NP exposure. Changes in the 14 metabolites correlated with changes to 3 microbial groups, including Proteobacteria, Firmicutes, and Bacteroidetes, as compared to the control group. A significant relationship between Firmicutes and homovanillic acid (0.466, Pearson correlation coefficient) was evident. Eight altered metabolites (l-glutamine (Gln), 5-hydroxyindoleacetic acid (5-HIAA), serotonin, 5-hydroxytryptophan (5-HTP), l-cysteine (Cys), l-glutamic acid (Glu), norepinephrine (NE), and l-tryptophan (l-Trp)) had a negative relationship with Proteobacteria although histamine (His) and acetylcholine chloride (ACh chloride) levels were positively correlated with Proteobacteria. An Associated Network analysis showed that Firmicutes and Bacteroidetes were highly correlated (0.969). Furthermore, PS-NPs accumulated in the gastrointestinal tract of offspring and impaired development of F1 (2 h post-fertilization) embryos, including reduced spontaneous movements, hatching rate, and length. This demonstration of transgenerational deficits is of particular concern. These findings suggest that PS-NPs cause intestinal inflammation, growth inhibition, and restricted development of zebrafish, which are strongly linked to the disrupted regulation within the brain-intestine-microbiota axis. Our study provides insights into how xenobiotics can disrupt the regulation of brain-intestine-microbiota and suggests that these end points should be taken into account when assessing environmental health risks of PS-NPs to aquatic organisms.


Assuntos
Microbioma Gastrointestinal , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Poliestirenos/toxicidade , Microplásticos/toxicidade , Firmicutes , Encéfalo/metabolismo
12.
ACS Nano ; 16(4): 6034-6048, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35404588

RESUMO

The inefficient delivery of agrichemicals in agrifood systems is among the leading cause of serious negative planetary and public health impacts. Such inefficiency is mainly attributed to the inability to deliver the agrichemicals at the right place (target), right time, and right dose. In this study, scalable, biodegradable, sustainable, biopolymer-based multistimuli responsive core-shell nanostructures were developed for smart agrichemical delivery. Three types of responsive core/shell nanostructures incorporated with model agrichemicals (i.e., CuSO4 and NPK fertilizer) were synthesized by coaxial electrospray, and the resulting nanostructures showed spherical morphology with an average diameter about 160 nm. Tunable agrichemical release kinetics were achieved by controlling the surface hydrophobicity of nanostructures. The pH and enzyme responsiveness was also demonstrated by the model analyte release kinetics (up to 7 days) in aqueous solution. Finally, the efficacy of the stimuli responsive nanostructures was evaluated in soil-based greenhouse studies using soybean and wheat in terms of photosynthesis efficacy and linear electron flow (LEF), two important metrics for seedling development and health. Findings confirmed plant specificity; for soybean, the nanostructures resulted in 34.3% higher value of relative chlorophyll content and 41.2% higher value of PS1 centers in photosystem I than the ionic control with equivalent agrichemical concentration. For wheat, the nanostructures resulted in 37.6% higher value of LEF than the ionic agrichemicals applied at 4 times higher concentration, indicating that the responsive core-shell nanostructure is an effective platform to achieve precision agrichemical delivery while minimizing inputs. Moreover, the Zn and Na content in the leaves of 4-week-old soybean seedlings were significantly increased with nanostructure amendment, indicating that the developed nanostructures can potentially be used to modulate the accumulation of other important micronutrients through a potential biofortification strategy.


Assuntos
Agroquímicos , Nanoestruturas , Nanoestruturas/química , Interações Hidrofóbicas e Hidrofílicas , Biopolímeros , Desenvolvimento Vegetal
13.
Environ Int ; 163: 107154, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334375

RESUMO

Nanoplastics are being detected with increasing frequency in aquatic environments. Although evidence suggests that nanoplastics can cause overt toxicity to biota across different trophic levels, but there is little understanding of how materials such as differently charged polystyrene nanoplastics (PS-NP) impact fish development and behavior. Following exposure to amino-modified (positive charge) PS-NP, fluorescence accumulation was observed in the zebrafish brain and gastrointestinal tract. Positively charged PS-NP induced stronger developmental toxicity (decreased spontaneous movement, heartbeat, hatching rate, and length) and cell apoptosis in the brain and induced greater neurobehavioral impairment as compared to carboxyl-modified (negative charge) PS-NP. These findings correlated well with fluorescence differences indicating PS-NP presence. Targeted neuro-metabolite analysis by UHPLC-MS/MS reveals that positively charged PS-NP decreased levels of glycine, cysteine, glutathione, and glutamic acid, while the increased levels of spermine, spermidine, and tyramine were induced by negatively charged PS-NP. Positively charged PS-NP interacted with the neurotransmitter receptor N-methyl-D-aspartate receptor 2B (NMDA2B), whereas negatively charged PS-NP impacted the G-protein-coupled receptor 1 (GPR1), each with different binding energies that led to behavioral differences. These findings reveal the charge-specific toxicity of nanoplastics to fish and provide new perspective for understanding PS-NP neurotoxicity that is needed to accurately assess potential environmental and health risks of these emerging contaminants.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Nanopartículas/toxicidade , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
14.
NanoImpact ; 23: 100329, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559830

RESUMO

The majority of published research on the effect of engineered nanoparticles on terrestrial plant species is focused on inorganic nanoparticles, with the effects of organic polymeric nanoparticles (NP) on plants remaining largely unexplored. It is critical to understand the impact of polymeric NPs on plants if these particles are to be used as agrochemical delivery systems. This study investigates the effect of biodegradable polymeric lignin-based nanoparticles (LNPs) and zein nanoparticles (ZNP) on soybean plant health. The LNPs (114 ± 3.4 nm, -53.8 ± 6.9 mV) were synthesized by emulsion evaporation from lignin-graft-poly(lactic-co-glycolic) acid, and ZNPs (142 ± 3.9 nm and + 64.5 ± 4.7 mV) were synthesized by nanoprecipitation. Soybeans were grown hydroponically and treated with 0.02, 0.2, and 2 mg/ml of LNPs or ZNPs at 28 days after germination. Plants were harvested after 1, 3, 7 and 14 days of particle exposure and analyzed for root and stem length, chlorophyll concentration, dry biomass of roots and stem, nutrient uptake and plant ROS. Root and stem length, chlorophyll and stem biomass did not differ significantly between treatments and controls for LNPs-treated plants at all concentrations, and at low doses of ZNPs. At 2 mg/ml ZNPs, the highest concentration tested, after 7 days of treatment chlorophyll levels and root biomass increased and stem length was reduced in comparison to the control. Nutrient uptake was largely unaffected at 0.02 and 0.2 mg/ml NPs. A concentration-dependent increase in the oxidative stresss was detected, especially in the ZNP treated plants. Overall, LNPs and ZNPs had a minimum impact on soybean health especially at low and medium doses. To our knowledge this is the first study to show the effect of zein and lignin based polymeric NPs designed for agrochemical delivery on soybean plant health.


Assuntos
Nanopartículas , Zeína , Agroquímicos/farmacologia , Clorofila/farmacologia , Lignina/farmacologia , Raízes de Plantas , Glycine max , Zeína/farmacologia
15.
ACS Appl Mater Interfaces ; 13(42): 50298-50308, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34648257

RESUMO

Active food packaging materials that are sustainable, biodegradable, and capable of precise delivery of antimicrobial active ingredients (AIs) are in high demand. Here, we report the development of novel enzyme- and relative humidity (RH)-responsive antimicrobial fibers with an average diameter of 225 ± 50 nm, which can be deposited as a functional layer for packaging materials. Cellulose nanocrystals (CNCs), zein (protein), and starch were electrospun to form multistimuli-responsive fibers that incorporated a cocktail of both free nature-derived antimicrobials such as thyme oil, citric acid, and nisin and cyclodextrin-inclusion complexes (CD-ICs) of thyme oil, sorbic acid, and nisin. The multistimuli-responsive fibers were designed to release the free AIs and CD-ICs of AIs in response to enzyme and RH triggers, respectively. Enzyme-responsive release of free AIs is achieved due to the degradation of selected polymers, forming the backbone of the fibers. For instance, protease enzyme can degrade zein polymer, further accelerating the release of AIs from the fibers. Similarly, RH-responsive release is obtained due to the unique chemical nature of CD-ICs, enabling the release of AIs from the cavity at high RH. The successful synthesis of CD-ICs of AIs and incorporation of antimicrobials in the structure of the multistimuli-responsive fibers were confirmed by X-ray diffraction and Fourier transform infrared spectrometry. Fibers were capable of releasing free AIs when triggered by microorganism-exudated enzymes in a dose-dependent manner and releasing CD-IC form of AIs in response to high relative humidity (95% RH). With 24 h of exposure, stimuli-responsive fibers significantly reduced the populations of foodborne pathogenic bacterial surrogates Escherichia coli (by ∼5 log unit) and Listeria innocua (by ∼5 log unit), as well as fungi Aspergillus fumigatus (by >1 log unit). More importantly, the fibers released more AIs at 95% RH than at 50% RH, which resulted in a higher population reduction of E. coli at 95% RH. Such biodegradable, nontoxic, and multistimuli-responsive antimicrobial fibers have great potential for broad applications as active and smart packaging systems.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Embalagem de Alimentos , Peptídeo Hidrolases/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Celulose/química , Celulose/metabolismo , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Umidade , Listeria/efeitos dos fármacos , Teste de Materiais , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/metabolismo , Peptídeo Hidrolases/química , Amido/química , Amido/metabolismo , Amido/farmacologia , Zeína/química , Zeína/metabolismo
16.
Int J Food Microbiol ; 305: 108246, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31238193

RESUMO

Cellulosic pads, amended with emulsions containing essential oils of thyme and oregano, exhibited antimicrobial activity against the psychrophilic microbiota of minced beef. In addition, the pads were active against specific meat bacterial species (Pseudomonas putida, Pseudomonas fragi, Pseudomonas fluorescens, Enterococcus faecalis and Lactococcus lactis) and some common foodborne pathogens (Salmonella enterica, Campylobacter jejuni and Staphylococcus aureus). Three emulsions, IT131017, Mediterranean and Etnic, containing different percentages of carvacrol, thymol, linalool, and ɑ and ß-pinene, significantly reduced the growth of S. enterica and P. putida. Pads derived from emulsions Mediterranean and Etnic induced slight (0.3-0.8 Log10 CFUs/g) but reproducible reduction of the psychrophilic microbiota in minced meat and hamburger stored for 12 and 15 days at 4 °C.


Assuntos
Antibacterianos/farmacologia , Cinnamomum zeylanicum/química , Óleos Voláteis/farmacologia , Origanum/química , Extratos Vegetais/farmacologia , Carne Vermelha/microbiologia , Thymus (Planta)/química , Monoterpenos Acíclicos , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes , Bovinos , Celulose/química , Cimenos , Emulsões/química , Emulsões/farmacologia , Microbiologia de Alimentos , Carne/microbiologia , Monoterpenos/química , Monoterpenos/farmacologia , Óleos Voláteis/química , Extratos Vegetais/química , Carne Vermelha/análise , Timol/química , Timol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA