Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 41(2): 186-96, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255729

RESUMO

Members of the crenarchaeal kingdom, such as Sulfolobus, divide by binary fission yet lack genes for the otherwise near-ubiquitous tubulin and actin superfamilies of cytoskeletal proteins. Recent work has established that Sulfolobus homologs of the eukaryotic ESCRT-III and Vps4 components of the ESCRT machinery play an important role in Sulfolobus cell division. In eukaryotes, several pathways recruit ESCRT-III proteins to their sites of action. However, the positioning determinants for archaeal ESCRT-III are not known. Here, we identify a protein, CdvA, that is responsible for recruiting Sulfolobus ESCRT-III to membranes. Overexpression of the isolated ESCRT-III domain that interacts with CdvA results in the generation of nucleoid-free cells. Furthermore, CdvA and ESCRT-III synergize to deform archaeal membranes in vitro. The structure of the CdvA/ESCRT-III interface gives insight into the evolution of the more complex and modular eukaryotic ESCRT complex.


Assuntos
Proteínas Arqueais/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Sulfolobus/citologia , Proteínas Arqueais/análise , Proteínas Arqueais/química , Complexos Endossomais de Distribuição Requeridos para Transporte/análise , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Regulação da Expressão Gênica em Archaea , Lipossomos/metabolismo , Fases de Leitura Aberta , Estrutura Terciária de Proteína , Transcrição Gênica
2.
Structure ; 16(9): 1345-56, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18786397

RESUMO

The ESCRT machinery mediates sorting of ubiquitinated transmembrane proteins to lysosomes via multivesicular bodies (MVBs) and also has roles in cytokinesis and viral budding. The ESCRT-III subunits are metastable monomers that transiently assemble on membranes. However, the nature of these assemblies is unknown. Among the core yeast ESCRT-III subunits, Snf7 and Vps24 spontaneously form ordered polymers in vitro. Single-particle EM reconstruction of helical Vps24 filaments shows both parallel and head-to-head subunit arrangements. Mutations of regions involved in intermolecular assembly in vitro result in cargo-sorting defects in vivo, suggesting that these homopolymers mimic interactions formed by ESCRT-III heteropolymers during MVB biogenesis. The C terminus of Vps24 is at the surface of the filaments and is not required for filament assembly. When this region is replaced by the MIT-interacting motif from the Vps2 subunit of ESCRT-III, the AAA-ATPase Vps4 can both bundle and disassemble the chimeric filaments in a nucleotide-dependent fashion.


Assuntos
Citoesqueleto/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/metabolismo , Citoesqueleto/metabolismo , Dimerização , Complexos Endossomais de Distribuição Requeridos para Transporte , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação de Sentido Incorreto/fisiologia , Polímeros/metabolismo , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/química , Transporte Proteico/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
3.
Dev Cell ; 7(4): 559-69, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15469844

RESUMO

ESCRT-I, -II, and -III protein complexes are sequentially recruited to endosomal membranes, where they orchestrate protein sorting and MVB biogenesis. In addition, they play a critical role in retrovirus budding. Structural understanding of ESCRT interaction networks is largely lacking. The 3.6 A structure of the yeast ESCRT-II core presented here reveals a trilobal complex containing two copies of Vps25, one copy of Vps22, and the C-terminal region of Vps36. Unexpectedly, the entire ESCRT-II core consists of eight repeats of a common building block, a "winged helix" domain. Two PPXY-motifs from Vps25 are involved in contacts with Vps22 and Vps36, and their mutation leads to ESCRT-II disruption. We show that purified ESCRT-II binds directly to the Vps20 component of ESCRT-III. Surprisingly, this binding does not require the protruding N-terminal coiled-coil of Vps22. Vps25 is the chief subunit responsible for Vps20 recruitment. This interaction dramatically increases binding of both components to lipid vesicles in vitro.


Assuntos
Cristalografia por Raios X , Endossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Escherichia coli/genética , Lipossomos/metabolismo , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular
4.
J Am Dent Assoc ; 137(4): 502-13, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16637480

RESUMO

BACKGROUND: Concerns about the safety of pediatric oral sedation and the incremental use of triazolam in adults prompted a workshop cosponsored by several professional organizations. OVERVIEW: There is a strong need and demand for adult and pediatric sedation services. Using oral medication to achieve anxiolysis in adults appears to have a wide margin of safety. Mortality and serious morbidity, however, have been reported with oral conscious sedation, especially in young children. Most serious adverse events are related to potentially avoidable respiratory complications. CONCLUSIONS: Clinical trials are needed to evaluate oral sedative drugs and combinations, as well as to develop discharge criteria with objective quantifiable measures of home readiness. Courses devoted to airway management should be developed for dentists who provide conscious sedation services. State regulation of enteral administration of sedatives to achieve conscious sedation is needed to ensure safety. PRACTICE IMPLICATIONS: Safety in outpatient sedation is of paramount concern, with enteral administration of benzodiazepines appearing safe but poorly documented in the office setting. Conscious sedation by the enteral route, including incremental triazolam, necessitates careful patient evaluation, monitoring, documentation, facilities, equipment and personnel as described in American Dental Association and American Academy of Pediatric Dentistry guidelines.


Assuntos
Anestesia Dentária/efeitos adversos , Ansiolíticos/efeitos adversos , Sedação Consciente/efeitos adversos , Assistência Odontológica para Crianças/métodos , Triazolam/efeitos adversos , Adulto , Anestesia Dentária/métodos , Ansiolíticos/administração & dosagem , Ansiolíticos/farmacocinética , Criança , Sedação Consciente/métodos , Ansiedade ao Tratamento Odontológico/tratamento farmacológico , Humanos , Triazolam/administração & dosagem , Triazolam/farmacocinética
5.
Structure ; 19(8): 1127-37, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21827948

RESUMO

Phosphoinositide 3-kinase δ is upregulated in lymphocytic leukemias. Because the p85-regulatory subunit binds to any class IA subunit, it was assumed there is a single universal p85-mediated regulatory mechanism; however, we find isozyme-specific inhibition by p85α. Using deuterium exchange mass spectrometry (DXMS), we mapped regulatory interactions of p110δ with p85α. Both nSH2 and cSH2 domains of p85α contribute to full inhibition of p110δ, the nSH2 by contacting the helical domain and the cSH2 via the C terminus of p110δ. The cSH2 inhibits p110ß and p110δ, but not p110α, implying that p110α is uniquely poised for oncogenic mutations. Binding RTK phosphopeptides disengages the SH2 domains, resulting in exposure of the catalytic subunit. We find that phosphopeptides greatly increase the affinity of the heterodimer for PIP2-containing membranes measured by FRET. DXMS identified regions decreasing exposure at membranes and also regions gaining exposure, indicating loosening of interactions within the heterodimer at membranes.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/química , Lipídeos de Membrana/química , Fosfatidilinositol 3-Quinases/química , Substituição de Aminoácidos , Animais , Classe I de Fosfatidilinositol 3-Quinases , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Medição da Troca de Deutério , Humanos , Lipossomos/química , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores do Fator de Crescimento Derivado de Plaquetas/química , Propriedades de Superfície
6.
Cell ; 125(1): 99-111, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16615893

RESUMO

ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Currently, the picture regarding assembly of ESCRTs on endosomes is incomplete. The structure of the conserved heterotrimeric ESCRT-I core presented here shows a fan-like arrangement of three helical hairpins, each corresponding to a different subunit. Vps23/Tsg101 is the central hairpin sandwiched between the other subunits, explaining the critical role of its "steadiness box" in the stability of ESCRT-I. We show that yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36 (ESCRT-II). The crystal structure of the GLUE domain missing this insertion reveals it is a split PH domain, with a noncanonical lipid binding pocket that binds PtdIns3P. The simultaneous and reinforcing interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes.


Assuntos
Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Cromatografia em Gel , Cristalografia por Raios X , Complexos Endossomais de Distribuição Requeridos para Transporte , Lipídeos , Lipossomos/metabolismo , Lisossomos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Vesículas Transportadoras/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA