Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 76(5): 727-37, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25164601

RESUMO

OBJECTIVE: Mutations in Charcot-Marie-Tooth disease (CMT) genes are the cause of rare familial forms of polyneuropathy. Whether allelic variability in CMT genes is also associated with common forms of polyneuropathy-considered "acquired" in medical parlance-is unknown. Chemotherapy-induced peripheral neuropathy (CIPN) occurs commonly in cancer patients and is individually unpredictable. We used CIPN as a clinical model to investigate the association of non-CMT polyneuropathy with CMT genes. METHODS: A total of 269 neurologically asymptomatic cancer patients were enrolled in the clinical trial Alliance N08C1 to receive the neurotoxic drug paclitaxel, while undergoing prospective assessments for polyneuropathy. Forty-nine CMT genes were analyzed by targeted massively parallel sequencing of genomic DNA from patient blood. RESULTS: A total of 119 (of 269) patients were identified from the 2 ends of the polyneuropathy phenotype distribution: patients that were most and least susceptible to paclitaxel polyneuropathy. The CMT gene PRX was found to be deleteriously mutated in patients who were susceptible to CIPN but not in controls (p = 8 × 10(-3)). Genetic variation in another CMT gene, ARHGEF10, was highly significantly associated with CIPN (p = 5 × 10(-4)). Three nonsynonymous recurrent single nucleotide variants contributed to the ARHGEF10 signal: rs9657362, rs2294039, and rs17683288. Of these, rs9657362 had the strongest effect (odds ratio = 4.8, p = 4 × 10(-4)). INTERPRETATION: The results reveal an association of CMT gene allelic variability with susceptibility to CIPN. The findings raise the possibility that other acquired polyneuropathies may also be codetermined by genetic etiological factors, of which some may be related to genes already known to cause the phenotypically related Mendelian disorders of CMT.


Assuntos
Antineoplásicos/efeitos adversos , Doença de Charcot-Marie-Tooth/genética , Polineuropatias/induzido quimicamente , Polineuropatias/genética , Alelos , Antineoplásicos Fitogênicos/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neoplasias/complicações , Paclitaxel/efeitos adversos , Estudos Prospectivos , Fatores de Troca de Nucleotídeo Guanina Rho/genética
2.
Microsurgery ; 31(4): 293-302, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21400584

RESUMO

The effect of microsphere delivered Nerve Growth Factor (NGF) in a poly-lactic-co-glycolic-acid (PLGA) 85/15 nerve conduit bridging a 10mm rat sciatic nerve gap was assessed, comparing nine groups (n = 6): PLGA conduits filled with saline, saline and NGF, saline with blank microspheres; four different NGF microspheres (5, 20, 50, and 100 mg/ml); an autologous graft and sciatic nerve gap. Histomorphometry, retrograde tracing, electrophysiology, and functional outcomes were evaluated up to 16 weeks. The autologous graft showed the largest fascicular area (0.65 mm(2) ) and had a significantly greater number of myelinated fibers (P < 0.0001). Electrophysiology showed Compound Muscle Action Potential (CMAP) recordings for the autologous graft returning at 6 weeks after nerve transection, reaching their highest amplitude of 3.6 mV at endpoint. No significant differences were found in functional evaluation between groups or between conduits with microspheres and the saline filled conduit. A PLGA 85/15 nerve conduit is capable of sustaining nerve regeneration. The microsphere delivery system does not interfere with regeneration.


Assuntos
Ácido Láctico/farmacologia , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa , Ácido Poliglicólico/farmacologia , Nervo Isquiático/fisiologia , Animais , Materiais Biocompatíveis , Modelos Animais de Doenças , Feminino , Microesferas , Regeneração Nervosa/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais , Cicatrização/efeitos dos fármacos
3.
Biomacromolecules ; 11(11): 2845-53, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-20942380

RESUMO

Electrically conductive hydrogel composites consisting of oligo(polyethylene glycol) fumarate (OPF) and polypyrrole (PPy) were developed for applications in nerve regeneration. OPF-PPy scaffolds were synthesized using three different anions: naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), and dioctyl sulfosuccinate sodium salt (DOSS). Scaffolds were characterized by ATR-FTIR, XPS, AFM, dynamic mechanical analysis, electrical resistivity measurements, and swelling experiments. OPF-PPy scaffolds were shown to consist of up to 25 mol % polypyrrole with a compressive modulus ranging from 265 to 323 kPa and a sheet resistance ranging from 6 to 30 × 10(3) Ohms/square. In vitro studies using PC12 cells showed OPF-PPy materials had no cytotoxicity and PC12 cells showed distinctly better cell attachment and an increase in the percent of neurite bearing cells on OPF-PPy materials compared to OPF. The neurite lengths of PC12 cells were significantly higher on OPF-PPyNSA and OPF-PPyDBSA. These results show that electrically conductive OPF-PPy hydrogels are promising candidates for future applications in nerve regeneration.


Assuntos
Hidrogéis/química , Regeneração Nervosa , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Pirróis/química , Animais , Condutividade Elétrica , Estrutura Molecular , Células PC12 , Ratos
4.
Neurosurg Focus ; 26(2): E5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19435445

RESUMO

Nerve tubes, guides, or conduits are a promising alternative for autologous nerve graft repair. The first biodegradable empty single lumen or hollow nerve tubes are currently available for clinical use and are being used mostly in the repair of small-diameter nerves with nerve defects of < 3 cm. These nerve tubes are made of different biomaterials using various fabrication techniques. As a result these tubes also differ in physical properties. In addition, several modifications to the common hollow nerve tube (for example, the addition of Schwann cells, growth factors, and internal frameworks) are being investigated that may increase the gap that can be bridged. This combination of chemical, physical, and biological factors has made the design of a nerve conduit into a complex process that demands close collaboration of bioengineers, neuroscientists, and peripheral nerve surgeons. In this article the authors discuss the different steps that are involved in the process of the design of an ideal nerve conduit for peripheral nerve repair.


Assuntos
Implantes Absorvíveis/tendências , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos , Nervos Periféricos/cirurgia , Doenças do Sistema Nervoso Periférico/cirurgia , Humanos , Comunicação Interdisciplinar , Teste de Materiais/métodos , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/uso terapêutico , Nervos Periféricos/fisiologia , Polímeros/farmacologia , Polímeros/uso terapêutico , Células de Schwann/transplante
5.
J Tissue Eng Regen Med ; 13(5): 857-873, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808065

RESUMO

Hydrogel scaffolds provide a beneficial microenvironment in transected rat spinal cord. A combinatorial biomaterials-based strategy provided a microenvironment that facilitated regeneration while reducing foreign body reaction to the three-dimensional spinal cord construct. We used poly lactic-co-glycolic acid microspheres to provide sustained release of rapamycin from Schwann cell (SC)-loaded, positively charged oligo-polyethylene glycol fumarate scaffolds. The biological activity and dose-release characteristics of rapamycin from microspheres alone and from microspheres embedded in the scaffold were determined in vitro. Three dose formulations of rapamycin were compared with controls in 53 rats. We observed a dose-dependent reduction in the fibrotic reaction to the scaffold and improved functional recovery over 6 weeks. Recovery was replicated in a second cohort of 28 animals that included retransection injury. Immunohistochemical and stereological analysis demonstrated that blood vessel number, surface area, vessel diameter, basement membrane collagen, and microvessel phenotype within the regenerated tissue was dependent on the presence of SCs and rapamycin. TRITC-dextran injection demonstrated enhanced perfusion into scaffold channels. Rapamycin also increased the number of descending regenerated axons, as assessed by Fast Blue retrograde axonal tracing. These results demonstrate that normalization of the neovasculature was associated with enhanced axonal regeneration and improved function after spinal cord transection.


Assuntos
Células Imobilizadas , Microesferas , Células de Schwann , Sirolimo , Regeneração da Medula Espinal , Alicerces Teciduais/química , Animais , Linhagem Celular , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Feminino , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ratos , Ratos Endogâmicos F344 , Células de Schwann/metabolismo , Células de Schwann/patologia , Células de Schwann/transplante , Sirolimo/química , Sirolimo/farmacocinética , Sirolimo/farmacologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Engenharia Tecidual
6.
Biomacromolecules ; 9(4): 1229-41, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18307311

RESUMO

Aiming to achieve suitable polymeric biomaterials with controlled physical properties for hard and soft tissue replacements, we have developed a series of blends consisting of two photo-cross-linkable polymers: polypropylene fumarate (PPF) and polycaprolactone fumarate (PCLF). Physical properties of both un-cross-linked and UV cross-linked PPF/PCLF blends with PPF composition ranging from 0% to 100% have been investigated extensively. It has been found that the physical properties such as thermal, rheological, and mechanical properties could be modulated efficiently by varying the PPF composition in the blends. Thermal properties including glass transition temperature (T g) and melting temperature (T m) have been correlated with their rheological and mechanical properties. Surface characteristics such as surface morphology, hydrophilicity, and the capability of adsorbing serum protein from culture medium have also been examined for the cross-linked polymer and blend disks. For potential applications in bone and nerve tissue engineering, in vitro cell studies including cytotoxicity, cell adhesion, and proliferation on cross-linked disks with controlled physical properties have been performed using rat bone marrow stromal cells and SPL201 cells, respectively. In addition, the role of mechanical properties such as surface stiffness in modulating cell responses has been emphasized using this model blend system.


Assuntos
Caproatos/farmacologia , Fumaratos/farmacologia , Lactonas/farmacologia , Bainha de Mielina/efeitos dos fármacos , Polímeros/farmacologia , Polipropilenos/farmacologia , Células Estromais/efeitos dos fármacos , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Caproatos/síntese química , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/efeitos da radiação , Fumaratos/síntese química , Lactonas/síntese química , Bainha de Mielina/metabolismo , Polímeros/síntese química , Polipropilenos/síntese química , Ratos , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células Estromais/metabolismo , Raios Ultravioleta
7.
J Tissue Eng Regen Med ; 12(1): e398-e407, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28296347

RESUMO

Positively-charged oligo[poly(ethylene glycol)fumarate] (OPF+ ) is a biodegradable hydrogel used for spinal cord injury repair. We compared scaffolds containing primary Schwann cells (SCs) to scaffolds delivering SCs genetically modified to secrete high concentrations of glial cell-derived neurotrophic factor (GDNF). Multichannel OPF+ scaffolds loaded with SCs or GDNF-SCs were implanted into transected rat spinal cords for 4 weeks. GDNF-SCs promoted regeneration of more axons into OPF+ scaffolds (2773.0 ± 396.0) than primary SC OPF+ scaffolds (1666.0 ± 352.2) (p = 0.0491). This increase was most significant in central and ventral-midline channels of the scaffold. Axonal remyelination was quantitated by stereologic analysis. Increased myelination of regenerating axons was observed in the GDNF-SC group. Myelinating cell and axon complexes were formed by host SCs and not by implanted cells or host oligodendrocytes. Fast Blue retrograde tracing studies determined the rostral-caudal directionality of axonal growth. The number of neurons that projected axons rostrally through the GDNF-SC scaffolds was higher (7929 ± 1670) than in animals with SC OPF+ scaffolds (1069 ± 241.5) (p < 0.0001). The majority of ascending axons were derived from neurons located more than 15 mm from the scaffold-cord interface, and were identified to be lumbosacral intraspinal motor neurons. Transected animals with GDNF-SC OPF+ scaffolds partially recovered locomotor function at weeks 3 and 4 following surgery. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Axônios/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hidrogéis/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Alicerces Teciduais/química , Animais , Axônios/efeitos dos fármacos , Fumaratos/química , Humanos , Polietilenoglicóis/química , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos
8.
Tissue Eng Part B Rev ; 24(6): 493-498, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30084747

RESUMO

IMPACT STATEMENT: This article describes the feasibility and path to establishing a current good manufacturing practice biomaterial facility in an academic medical center. It presents a solution to overcome the "Valley of Death" in bench to bedside translation of biomaterials-based medical devices. It sets a good and feasible example to those who are interested in joining the path toward clinical practice/commercialization, and helps to spur other institutions and investigators to think about how they could incorporate in-house processes and facilities to help speed up the translation of their work into first-in-human trials.


Assuntos
Centros Médicos Acadêmicos/organização & administração , Materiais Biocompatíveis/química , Atenção à Saúde/normas , Arquitetura de Instituições de Saúde/normas , Prática Profissional/normas , Engenharia Tecidual/métodos , Humanos
9.
Matrix Biol ; 60-61: 176-189, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27641621

RESUMO

Spinal cord and peripheral nerve injuries require the regeneration of nerve fibers across the lesion site for successful recovery. Providing guidance cues and soluble factors to promote neurite outgrowth and cell survival can enhance repair. The extracellular matrix (ECM) plays a key role in tissue repair by controlling cell adhesion, motility, and growth. In this study, we explored the ability of a mesenchymal ECM to support neurite outgrowth from neurons in the superior cervical ganglia (SCG). Length and morphology of neurites extended on a decellularized fibroblast ECM were compared to those on substrates coated with laminin, a major ECM protein in neural tissue, or fibronectin, the main component of a mesenchymal ECM. Average radial neurite extension was equivalent on laminin and on the decellularized ECM, but contrasted with the shorter, curved neurites observed on the fibronectin substrate. Differences between neurites on fibronectin and on other substrates were confirmed by fast Fourier transform analyses. To control the direction of neurite outgrowth, we developed an ECM with linearly aligned fibril organization by orienting the fibroblasts that deposit the matrix on a polymeric surface micropatterned with a striped chemical interface. Neurites projected from SCGs appeared to reorient in the direction of the pattern. These results highlight the ability of a mesenchymal ECM to enhance neurite extension and to control the directional outgrowth of neurites. This micropatterned decellularized ECM architecture has potential as a regenerative microenvironment for nerve repair.


Assuntos
Matriz Extracelular/química , Fibroblastos/química , Regeneração Nervosa/fisiologia , Gânglio Cervical Superior/citologia , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Embrião de Mamíferos , Fibronectinas/química , Fibronectinas/farmacologia , Análise de Fourier , Laminina/química , Laminina/farmacologia , Células-Tronco Mesenquimais/química , Camundongos , Células NIH 3T3 , Neuritos/metabolismo , Neuritos/ultraestrutura , Células PC12 , Polietilenotereftalatos/química , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/crescimento & desenvolvimento , Gânglio Cervical Superior/metabolismo , Propriedades de Superfície
10.
Biomaterials ; 27(3): 419-29, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16137759

RESUMO

As molecular, cellular, and tissue-level treatments for spinal cord injury are discovered, it is likely that combinations of such treatments will be necessary to elicit functional recovery in animal models or patients. We describe multiple-channel, biodegradable scaffolds that serve as the basis for a model to investigate simultaneously the effects on axon regeneration of scaffold architecture, transplanted cells, and locally delivered molecular agents. Poly(lactic-co-glycolic acid) (PLGA) with copolymer ratio 85:15 was used for these initial experiments. Injection molding with rapid solvent evaporation resulted in scaffolds with a plurality of distinct channels running parallel along the length of the scaffolds. The feasibility of creating scaffolds with various channel sizes and geometries was demonstrated. Walls separating open channels were found to possess void fractions as high as 89%, with accessible void fractions as high as 90% through connections 220 microm or larger. Scaffolds degraded in vitro over a period of 30 weeks, over which time-sustained delivery of a surrogate drug was observed for 12 weeks. Primary neonatal Schwann cells were distributed in the channels of the scaffold and remained viable in tissue culture for at least 48 h. Schwann-cell containing scaffolds implanted into transected adult rat spinal cords contained regenerating axons at one month post-operation. Axon regeneration was demonstrated by three-dimensional reconstruction of serial histological sections.


Assuntos
Axônios/fisiologia , Regeneração Tecidual Guiada/métodos , Regeneração Nervosa , Medula Espinal/fisiologia , Implantes Absorvíveis , Animais , Animais Geneticamente Modificados , Preparações de Ação Retardada/química , Dextranos/química , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Proteínas de Fluorescência Verde/genética , Implantes Experimentais , Ácido Láctico/química , Masculino , Cloreto de Metileno/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Porosidade , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/transplante , Medula Espinal/citologia , Traumatismos da Medula Espinal/terapia , Engenharia Tecidual/métodos , Tomografia Computadorizada por Raios X
11.
Tissue Eng Part A ; 21(13-14): 2099-114, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25891264

RESUMO

Positively charged oligo[poly(ethylene glycol) fumarate] (OPF+) scaffolds loaded with Schwann cells bridge spinal cord injury (SCI) lesions and support axonal regeneration in rat. The regeneration achieved is not sufficient for inducing functional recovery. Attempts to increase regeneration would benefit from understanding the effects of the scaffold and transplanted cells on lesion environment. We conducted morphometric and stereological analysis of lesions in rats implanted with OPF+ scaffolds with or without loaded Schwann cells 1, 2, 3, 4, and 8 weeks after thoracic spinal cord transection. No differences were found in collagen scarring, cyst formation, astrocyte reactivity, myelin debris, or chondroitin sulfate proteoglycan (CSPG) accumulation. However, when scaffold-implanted animals were compared with animals with transection injuries only, these barriers to regeneration were significantly reduced, accompanied by increased activated macrophages/microglia. This distinctive and regeneration permissive tissue reaction to scaffold implantation was independent of Schwann cell transplantation. Although the tissue reaction was beneficial in the short term, we observed a chronic fibrotic host response, resulting in scaffolds surrounded by collagen at 8 weeks. This study demonstrates that an appropriate biomaterial scaffold improves the environment for regeneration. Future targeting of the host fibrotic response may allow increased axonal regeneration and functional recovery.


Assuntos
Fumaratos/farmacologia , Polietilenoglicóis/farmacologia , Implantação de Prótese , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína Básica da Mielina/metabolismo , Fenótipo , Proteoglicanas/metabolismo , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/transplante , Fatores de Tempo
12.
Biomaterials ; 23(13): 2683-92, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12059017

RESUMO

The objective of this study was to evaluate a poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) (PLGA/PEG) delivery system for nuclear factor-kappa B (NFkappaB) decoy phosphorothioated oligonucleotides (ODNs). PLGA/PEG microparticles loaded with ODNs were fabricated with entrapment efficiencies up to 70%. The effects of PEG contents (0, 5, and l0 wt%), ODN loading densities (0.4, 4, and 40 microg/mg), and pH of the incubation medium (pH 5, 7.4. and 10) on ODN release kinetics from the PLGA/PEG microparticles were investigated in vitro for up to 28 days. The release profiles in pH 7.4 phosphate buffered saline (PBS) were characterized by an initial burst during the first 2 days, a linear release phase until day 18, and a final release phase for the rest of the period. Up to 85% of the ODNs were released after 28 days in pH 7.4 PBS regardless of the ODN loading density and PEG content. Higher ODN loading densities resulted in lower entrapment efficiencies and greater initial burst effects. The bulk degradation of PLGA was not significantly affected by the PEG content and ODN loading density, but significantly accelerated at acidic buffer pH. Under acidic and basic conditions, the aggregation of microparticles resulted in significantly lower cumulative mass of released ODNs than that released at neutral pH. The effects of pH were reduced by the incorporation of PEG into PLGA microparticles. Since the PLGA degradation products are acidic, PLGA/PEG microparticles might provide a better ODN delivery vehicle than PLGA microparticles. These results suggest that PLGA/PEG microparticles are useful as delivery vehicles for controlled release of ODNs and merit further investigation in cell culture and animal models of glioblastoma.


Assuntos
NF-kappa B/administração & dosagem , Oligonucleotídeos/farmacologia , Polímeros/química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Cinética , Ácido Láctico/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fatores de Tempo
13.
Biomaterials ; 23(13): 2773-81, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12059028

RESUMO

The objectives of this study were to investigate a nuclear factor-kappa B (NFkappaB) decoy oligonucleotide (ODN) strategy on the inhibition of glioblastoma (GBM) cell line growth and to evaluate a poly(DL-lactic-co-glycolic acid) (PLGA) microparticle delivery system for the NFKB decoy ODNs in vitro. We have demonstrated that NFkappaB activation is important in regulating GBM cell line growth. Aberrant nuclear expression of NFkappaB was found in a panel of GBM cell lines, while untransformed glial cells did not display NFkappaB activity. Nuclear translocation of NFkappaB was inhibited by using a 'decoy" ODN strategy. NFkappaB decoy ODNs designed to inhibit NFkappaB resulted in a significant reduction in cell number (up to 45%) compared to control cultures after 2 days. The reduction in cell number correlated with a decrease in cyclin D1 protein expression and a commensurate decrease in Cdk-4 activity. These results provide evidence suggesting that NFkappaB mediates cell cycle progression and demonstrates a mechanism linking increased NFkappaB activity with GBM cell growth and cell cycle disregulation. Decoy ODNs were encapsulated at a yield of 66% in PLGA microparticles and released in a controlled manner in phosphate buffered saline for up to 28 days. Approximately 83% of entrapped ODNs were released by day 28. During 3 days of GBM cell line culture, the released decoy ODNs retained their biologic activity and led to significantly reduced cell number as compared to control cultures. These findings offer a potential therapeutic strategy in the control of human GBM cell line growth in vitro and suggest that PLGA microparticles may be appropriate as delivery vehicles for the "decoy" ODN strategy.


Assuntos
Materiais Biocompatíveis/farmacologia , Biodegradação Ambiental , NF-kappa B/farmacologia , Oligonucleotídeos/farmacologia , Polímeros/farmacologia , Proteínas Proto-Oncogênicas , Transporte Ativo do Núcleo Celular , Western Blotting , Divisão Celular , Linhagem Celular , Células Cultivadas , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Immunoblotting , Cinética , Ácido Láctico/farmacologia , NF-kappa B/metabolismo , Neuroglia/citologia , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fatores de Tempo , Células Tumorais Cultivadas
14.
Neurosurgery ; 51(3): 742-51; discussion 751-2, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12188954

RESUMO

PURPOSE: Biodegradable polymers have been used in the surgical repair of peripheral nerves, but their potential for use in the central nervous system has not been exploited adequately. This article discusses concepts related to the engineering of a biodegradable polymer graft for surgical repair of the injured spinal cord and explores the potential means by which such a device might promote axon regeneration and functional recovery after spinal cord injury. CONCEPT: A biodegradable polymer implant with controlled microarchitecture can be engineered, and its composition can be optimized for implantation in the spinal cord. RATIONALE: The use of a biodegradable polymer implant has the dual advantages of providing a structural scaffold for axon growth and a conduit for sustained-release delivery of therapeutic agents. As a scaffold, the microarchitecture of the implant can be engineered for optimal axon growth and transplantation of permissive cell types. As a conduit for the delivery of therapeutic agents that may promote axon regeneration, the biodegradable polymer offers an elegant solution to the problems of local delivery and controlled release over time. Thus, a biodegradable polymer graft would theoretically provide an optimal structural, cellular, and molecular framework for the regrowth of axons across a spinal cord lesion and, ultimately, neurological recovery. CONCLUSION: Biodegradable polymer grafts may have significant therapeutic potential in the surgical repair of the injured spinal cord. Further research should be focused on the bioengineering, characterization, and experimental application of these devices.


Assuntos
Implantes Absorvíveis , Polímeros , Traumatismos da Medula Espinal/cirurgia , Animais , Transplante de Células/métodos , Sistemas de Liberação de Medicamentos , Desenho de Equipamento , Humanos , Células de Schwann/transplante
15.
J Biomed Mater Res A ; 71(2): 258-67, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15376269

RESUMO

Pore interconnectivity within scaffolds is an important parameter influencing cell migration and tissue ingrowth needed to promote tissue regeneration. Methods for assessment of interconnectivity are usually qualitative, restricted to two-dimensional images, or are destructive. Microcomputed tomography nondestructively provides three-dimensional (3D) images of intact specimens at high spatial resolutions. We describe an image analysis technique for quantitative assessment of scaffold interconnectivity. Scaffolds were made via a particulate leaching process with 75%, 80%, 85%, and 88% volumetric porogen fractions. Specimens were scanned and resulting 3D, digital images were analyzed with a custom algorithm. A series of virtual, idealized scaffolds were also created for illustration of the algorithm's analysis approach and for its validation. The program calculated accessible void fractions over a range of minimum connection sizes. In real specimens, nearly 100% of the porous volume was connected with outside air for connections greater than or equal to 20 microm in their smallest dimension. In scaffolds made with 75% porogen, the accessible void fraction decreased to 78% if only those connections greater than or equal to 260 microm were considered. The relationship between accessible void fraction and connection size varied as a function of porogen content. The interconnectivity parameter described here may have implications for cell migration and tissue growth into scaffolds.


Assuntos
Materiais Biocompatíveis/química , Tomografia Computadorizada por Raios X , Algoritmos , Microscopia Eletrônica de Varredura , Porosidade
16.
Tissue Eng Part A ; 20(21-22): 2985-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24854680

RESUMO

The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF(+)) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF(+) scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels significantly correlated to axon number as a hyperbolic function, showing a need to engineer high numbers of small vessels in parallel to improving axonal densities. In conclusion, Schwann cells and eGFP-MSCs influenced the regenerating microenvironment with lasting effect on axonal and blood vessel growth. OPF(+) scaffolds in a complete transection model allowed for a detailed comparative, histologic analysis of the cellular architecture in response to each cell type and provided insight into physiologic characteristics that may support axon regeneration.


Assuntos
Axônios/patologia , Transplante de Células-Tronco Mesenquimais/instrumentação , Neovascularização Fisiológica/fisiologia , Poliésteres/química , Polietilenoglicóis/química , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais , Animais , Células Cultivadas , Análise de Falha de Equipamento , Feminino , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Regeneração Nervosa/fisiologia , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
17.
Spine J ; 14(9): 2172-7, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24509005

RESUMO

BACKGROUND CONTEXT: Traumatic injuries occurring at the conus medullaris of the spinal cord cause permanent damage both to the central nervous system and to the cauda equina nerve roots. PURPOSE: This proof-of-concept study was to determine whether implanting the nerve roots into a biodegradable scaffold would improve regeneration after injury. METHODS: All experimental works involving rats were performed according to the approved guidelines by the Mayo Clinic Institutional Animal Care and Use Committee. Surgical procedures were performed on 32 Sprague-Dawley rats. Four ventral cauda equina nerve roots were reimplanted either directly into the ventral cord stump or through a poly(lactic-co-glycolic acid) (PLGA) scaffold. These experimental groups were compared with a control group in which the nerves were inserted into a muscle fascia barrier that was placed between the spinal cord and the nerve roots. Animals were sacrificed at 4 weeks. RESULTS: There was no difference in motor neuron counts in the spinal cord rostral to the injury in all treatment groups, implying equal potential for the regeneration into implanted nerve roots. One-way analysis of variance testing, with Tukey post hoc test, showed a statistically significant improvement in axon regeneration through the injury in the PLGA scaffold treatment group compared with the control (p<.05, scaffold n=11, control n=11). CONCLUSIONS: This pilot study demonstrated that a PLGA scaffold improved regeneration of axons into peripheral nerve roots. However, the number of regenerating axons observed was limited and did not lead to functional recovery. Future experiments will employ a different scaffold material and possible growth factors or enzymes to increase axon populations.


Assuntos
Materiais Biocompatíveis , Cauda Equina/cirurgia , Regeneração Nervosa , Reimplante/métodos , Traumatismos da Medula Espinal/cirurgia , Alicerces Teciduais , Animais , Ácido Láctico , Projetos Piloto , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
18.
Biomaterials ; 34(34): 8630-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23937914

RESUMO

Four biomaterial tubes, poly(lactic-co-glycolic acid) (PLGA), poly(caprolactone fumarate) (PCLF), a neutral oligo[(polyethylene glycol) fumarate] (OPF) hydrogel or a positively charged oligo[(polyethylene glycol) fumarate] (OPF(+)) hydrogel with a PCLF sleeve, have previously been shown to have benefits for nerve repair. However, no direct comparison to identify the optimal material have been made. Herein, these nerve tubes were implanted in a rat sciatic nerve model and nerve regeneration was quantified and compared by using accepted nerve assessment techniques. Using standard statistical methods, no significant differences of individual parameters were apparent between groups despite PCLF showing a tendency to perform better than the others. Using a mean-variance based ranking system of multiple independent parameters, statistical differences became apparent. It was clear that the PLCF tube supported significantly improved nerve regeneration and recovery compared to the other three biomaterial conduits. The ability to simultaneously compare a number of regenerative parameters and elucidate the best material from the combination of these individual parameters is of importance to the nerve regeneration area and has implications for the tissue engineering field. By using this method of comparison, a number of biomaterial constructs may be compared under similar conditions and the optimal construct elucidated using the minimal number of animals and materials.


Assuntos
Materiais Biocompatíveis/química , Regeneração Nervosa/efeitos dos fármacos , Próteses e Implantes , Nervo Isquiático/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Ácido Láctico/farmacologia , Poliésteres/farmacologia , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química
19.
Acta Biomater ; 8(1): 133-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21911087

RESUMO

Polycaprolactone fumarate (PCLF) is a cross-linkable derivative of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of PCLF (PCLF(DEG)) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLF(PPD)) or glycerol (PCLF(GLY)). PCLF(PPD) is linear and resembles the previously studied PCLF(DEG), while PCLF(GLY) is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLF(PPD) has material properties similar to the previously studied PCLF(DEG). The branched PCLF(GLY) exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate Food and Drug Administration approvable sterilization method is addressed. This study shows that autoclave sterilization of PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties.


Assuntos
Etilenoglicóis/toxicidade , Poliésteres/química , Poliésteres/síntese química , Poliésteres/metabolismo , Polímeros/química , Esterilização/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Elasticidade , Etilenoglicóis/química , Glicerol/química , Teste de Materiais , Estrutura Molecular , Células PC12 , Polímeros/síntese química , Polímeros/metabolismo , Propilenoglicol/química , Ratos , Estresse Mecânico , Temperatura
20.
Biomaterials ; 33(28): 6660-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22738778

RESUMO

The current microsurgical gold standard for repairing long gap nerve injuries is the autograft. Autograft provides a protective environment for repair and a natural internal architecture, which is essential for regeneration. Current clinically approved hollow nerve guidance conduits allow provision of this protective environment; however they fail to provide an essential internal architecture to the regenerating nerve. In the present study both structured and unstructured intraluminal collagen fibres are investigated to assess their ability to enhance conduit mediated nerve repair. This study presents a direct comparison of both structured and unstructured fibres in vivo. The addition of intraluminal guidance structures was shown to significantly decrease axonal dispersion within the conduit and reduced axonal mismatch of distal nerve targets (p < 0.05). The intraluminal fibres were shown to be successfully incorporated into the host regenerative process, acting as a platform for Schwann cell migration and axonal regeneration. Ultimately the fibres were able to provide a platform for nerve regeneration in a long term regeneration study (16 weeks) and facilitated increased guidance of regenerating axons towards their distal nerve targets.


Assuntos
Axônios/fisiologia , Colágeno/química , Regeneração Tecidual Guiada/métodos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/cirurgia , Nervos Periféricos/fisiologia , Animais , Materiais Biocompatíveis , Carbodi-Imidas/química , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Microambiente Celular/fisiologia , Colágeno/metabolismo , Colágeno/ultraestrutura , Feminino , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/tendências , Microscopia Eletrônica de Varredura , Procedimentos Neurocirúrgicos/métodos , Nervos Periféricos/ultraestrutura , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Células de Schwann/fisiologia , Nervo Isquiático/fisiologia , Succinimidas/química , Propriedades de Superfície , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA