Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
ACS Appl Mater Interfaces ; 15(27): 32148-32161, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364369

RESUMO

Synthetic matrices that are cytocompatible, cell adhesive, and cell responsive are needed for the engineering of implantable, secretory salivary gland constructs to treat radiation induced xerostomia or dry mouth. Here, taking advantage of the bioorthogonality of the Michael-type addition reaction, hydrogels with comparable stiffness but varying degrees of degradability (100% degradable, 100DEG; 50% degradable, 50DEG; and nondegradable, 0DEG) by cell-secreted matrix metalloproteases (MMPs) were synthesized using thiolated HA (HA-SH), maleimide (MI)-conjugated integrin-binding peptide (RGD-MI), and MI-functionalized peptide cross-linkers that are protease degradable (GIW-bisMI) or nondegradable (GIQ-bisMI). Organized multicellular structures developed readily in all hydrogels from dispersed primary human salivary gland stem cells (hS/PCs). As the matrix became progressively degradable, cells proliferated more readily, and the multicellular structures became larger, less spherical, and more lobular. Immunocytochemical analysis showed positive staining for stem/progenitor cell markers CD44 and keratin 5 (K5) in all three types of cultures and positive staining for the acinar marker α-amylase under 50DEG and 100DEG conditions. Quantitatively at the mRNA level, the expression levels of key stem/progenitor markers KIT, KRT5, and ETV4/5 were significantly increased in the degradable gels as compared to the nondegradable counterparts. Western blot analyses revealed that imparting matrix degradation led to >3.8-fold increase in KIT expression by day 15. The MMP-degradable hydrogels also promoted the development of a secretary phenotype, as evidenced by the upregulation of acinar markers α-amylase (AMY), aquaporin-5 (AQP5), and sodium-potassium chloride cotransporter 1 (SLC12A2). Collectively, we show that cell-mediated matrix remodeling is necessary for the development of regenerative pro-acinar progenitor cells from hS/PCs.


Assuntos
Glândulas Salivares , Células-Tronco , Humanos , Células Cultivadas , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Hidrogéis/química , Compostos de Sulfidrila/química , Sobrevivência Celular , Biomarcadores
2.
Laryngoscope ; 132(2): 322-331, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34236085

RESUMO

OBJECTIVES: First, establishment and validation of a novel questionnaire documenting the burden of xerostomia and sialadenitis symptoms, including quality of life. Second, to compare two versions regarding the answering scale (proposed developed answers Q3 vs. 0-10 visual analogue scale Q10) of our newly developed questionnaire, in order to evaluate their comprehension by patients and their reproducibility in time. STUDY DESIGN: The study is a systematic review regarding the evaluation of the existing questionnaire and a cohort study regarding the validation of our new MSGS questionnaire. MATERIALS AND METHODS: A Multidisciplinary Salivary Gland Society (MSGS) questionnaire consisting of 20 questions and two scoring systems was developed to quantify symptoms of dry mouth and sialadenitis. Validation of the questionnaire was carried out on 199 patients with salivary pathologies (digestive, nasal, or age-related xerostomia, post radiation therapy, post radioiodine therapy, Sjögren's syndrome, IgG4 disease, recurrent juvenile parotitis, stones, and strictures) and a control group of 66 healthy volunteers. The coherence of the questionnaire's items, its reliability to distinguish patients from healthy volunteers, its comparison with unstimulated sialometry, and the time to fill both versions were assessed. RESULTS: The novel MSGS questionnaire showed good internal coherence of the items, indicating its pertinence: the scale reliability coefficients amounted to a Cronbach's alpha of 0.92 for Q10 and 0.90 for Q3. The time to complete Q3 and Q10 amounted, respectively, to 5.23 min (±2.3 min) and 5.65 min (±2.64 min) for patients and to 3.94 min (±3.94 min) and 3.75 min (±2.11 min) for healthy volunteers. The difference between Q3 and Q10 was not significant. CONCLUSION: We present a novel self-administered questionnaire quantifying xerostomia and non-tumoral salivary gland pathologies. We recommend the use of the Q10 version, as its scale type is well known in the literature and it translation for international use will be more accurate. Laryngoscope, 132:322-331, 2022.


Assuntos
Doenças das Glândulas Salivares/diagnóstico , Xerostomia/diagnóstico , Estudos de Coortes , Humanos , Qualidade de Vida , Reprodutibilidade dos Testes , Sociedades Médicas , Inquéritos e Questionários , Escala Visual Analógica
3.
Front Mol Biosci ; 8: 711602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660692

RESUMO

An urgent need exists to develop large animal models for preclinical testing of new cell therapies designed to replace lost or damaged tissues. Patients receiving irradiation for treatment of head and neck cancers frequently develop xerostomia/dry mouth, a condition that could one day be treated by cell therapy to repopulate functional saliva-producing cells. Using immunosuppression protocols developed for patients receiving whole face transplants, we successfully used immunosuppressed miniswine as a suitable host animal to evaluate the long-term stability, biocompatibility, and fate of matrix-modified hyaluronate (HA) hydrogel/bioscaffold materials containing encapsulated salivary human stem/progenitor cells (hS/PCs). An initial biocompatibility test was conducted in parotids of untreated miniswine. Subsequent experiments using hS/PC-laden hydrogels were performed in animals, beginning an immunosuppression regimen on the day of surgery. Implant sites included the kidney capsule for viability testing and the parotid gland for biointegration time periods up to eight weeks. No transplant rejection was seen in any animal assessed by analysis of the tissues near the site of the implants. First-generation implants containing only cells in hydrogel proved difficult to handle in the surgical suite and were modified to adhere to a porcine small intestinal submucosa (SIS) membrane for improved handling and could be delivered through the da Vinci surgical system. Several different surgical techniques were assessed using the second-generation 3D-salivary tissue (3D-ST) for ease and stability both on the kidney capsule and in the capsule-less parotid gland. For the kidney, sliding the implant under the capsule membrane and quick stitching proved superior to other methods. For the parotid gland, creation of a tissue "pocket" for placement and immediate multilayer tissue closure were well tolerated with minimal tissue damage. Surgical clips were placed as fiduciary markers for tissue harvest. Some implant experiments were conducted with miniswine 90 days post-irradiation when salivation decreased significantly. Sufficient parotid tissue remained to allow implant placement, and animals tolerated immunosuppression. In all experiments, viability of implanted hS/PCs was high with clear signs of both vascular and nervous system integration in the parotid implants. We thus conclude that the immunosuppressed miniswine is a high-value emerging model for testing human implants prior to first-in-human trials.

4.
EBioMedicine ; 41: 175-184, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30765319

RESUMO

BACKGROUND: Patient-derived xenograft (PDX) models have significantly enhanced cancer research, and often serve as a robust model. However, enhanced growth rate and altered pathological phenotype with serial passages have repeatedly been shown in adenoid cystic carcinoma (ACC) PDX tumors, which is a major concern. METHODS: We evaluated the fidelity of ACCs in their natural habitat by performing ACC orthotopic xenotransplantation (PDOX) in salivary glands. FINDINGS: Our PDOX model enabled solid tumors to integrate within the local epithelial, stromal and neuronal environment. Over serial passages, PDOX tumors maintained their stereotypic MYB-NFIB translocation, and FGFR2 and ATM point mutations. Tumor growth rate and histopathology were retained, including ACCs hallmark presentations of cribriform, tubular, solid areas and innervation. We also demonstrate that the PDOX model retains its capacity as a tool for drug testing. INTERPRETATION: Unlike the precedent PDX model, our data shows that the PDOX is a superior model for future cancer biology and therapy research. FUND: This work was supported by the National Institutes of Health (NIH)/National Institute of Dental and Craniofacial Research (NIDCR) grants DE022557, DE027034, and DE027551.


Assuntos
Carcinoma Adenoide Cístico/patologia , Neoplasias de Cabeça e Pescoço/patologia , Fenótipo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/fisiopatologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/fisiopatologia , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Mutação Puntual , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Glândulas Salivares/patologia
5.
Biomaterials ; 142: 124-135, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28734180

RESUMO

Myoepithelial cells are flat, stellate cells present in exocrine tissues including the salivary glands. While myoepithelial cells have been studied extensively in mammary and lacrimal gland tissues, less is known of the function of myoepithelial cells derived from human salivary glands. Several groups have isolated tumorigenic myoepithelial cells from cancer specimens, however, only one report has demonstrated isolation of normal human salivary myoepithelial cells needed for use in salivary gland tissue engineering applications. Establishing a functional organoid model consisting of myoepithelial and secretory acinar cells is therefore necessary for understanding the coordinated action of these two cell types in unidirectional fluid secretion. Here, we developed a bottom-up approach for generating salivary gland microtissues using primary human salivary myoepithelial cells (hSMECs) and stem/progenitor cells (hS/PCs) isolated from normal salivary gland tissues. Phenotypic characterization of isolated hSMECs confirmed that a myoepithelial cell phenotype consistent with that from other exocrine tissues was maintained over multiple passages of culture. Additionally, hSMECs secreted basement membrane proteins, expressed adrenergic and cholinergic neurotransmitter receptors, and released intracellular calcium [Ca2+i] in response to parasympathetic agonists. In a collagen I contractility assay, activation of contractile machinery was observed in isolated hSMECs treated with parasympathetic agonists. Recombination of hSMECs with assembled hS/PC spheroids in a microwell system was used to create microtissues resembling secretory complexes of the salivary gland. We conclude that the engineered salivary gland microtissue complexes provide a physiologically relevant model for both mechanistic studies and as a building block for the successful engineering of the salivary gland for restoration of salivary function in patients suffering from hyposalivation.


Assuntos
Células Epiteliais/citologia , Glândulas Salivares/fisiologia , Engenharia Tecidual/métodos , Cálcio/metabolismo , Separação Celular , Colágeno Tipo I/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Agonistas Muscarínicos/farmacologia , Neurotransmissores/metabolismo , Fenótipo , Receptores Muscarínicos/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos
6.
Stem Cells Transl Med ; 6(1): 110-120, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28170182

RESUMO

Radiotherapy for head and neck cancer often has undesirable effects on salivary glands that lead to xerostomia or severe dry mouth, which can increase oral infections. Our goal is to engineer functional, three-dimensional (3D) salivary gland neotissue for autologous implantation to provide permanent relief. An immediate need exists to obtain autologous adult progenitor cells as the use of embryonic and induced pluripotent stem cells potentially pose serious risks such as teratogenicity and immunogenic rejection. Here, we report an expandable population of primary salivary human stem/progenitor cells (hS/PCs) that can be reproducibly and scalably isolated and propagated from tissue biopsies. These cells have increased expression of progenitor markers (K5, K14, MYC, ETV4, ETV5) compared with differentiation markers of the parotid gland (acinar: MIST1/BHLHA15 and AMY1A; ductal: K19 and TFCP2L1). Isolated hS/PCs grown in suspension formed primary and secondary spheres and could be maintained in long-term 3D hydrogel culture. When grown in a customized 3D modular hyaluronate-based hydrogel system modified with bioactive basement membrane-derived peptides, levels of progenitor markers, indices of proliferation, and viability of hS/PCs were enhanced. When appropriate microenvironmental cues were provided in a controlled manner in 3D, such as stimulation with ß-adrenergic and cholinergic agonists, hS/PCs differentiated into an acinar-like lineage, needed for saliva production. We conclude that the stem/progenitor potential of adult hS/PCs isolated without antigenic sorting or clonal expansion in suspension, combined with their ability to differentiate into specialized salivary cell lineages in a human-compatible culture system, makes them ideal for use in 3D bioengineered salivary gland applications. Stem Cells Translational Medicine 2017;6:110-120.


Assuntos
Células Acinares/citologia , Diferenciação Celular , Microambiente Celular , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Glândulas Salivares/citologia , Células-Tronco/citologia , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Adulto , Membrana Basal/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Humanos , Glândula Parótida/citologia , Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
7.
ACS Biomater Sci Eng ; 2(12): 2217-2230, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27990487

RESUMO

Current treatments for chronic xerostomia, or "dry mouth", do not offer long-term therapeutic benefits for head and neck cancer survivors previously treated with curative radiation. Towards the goal of creating tissue-engineered constructs for the restoration of salivary gland functions, we developed new hyaluronic acid (HA)-based hydrogels using thiolated HA (HA-SH) and acrylated HA (HA-AES) with a significant molecular weight mismatch. Four hydrogel formulations with varying HA concentration, (1-2.4 wt%) and thiol/acrylate ratios (2/1 to 36/1) and elastic moduli (G': 35 to 1897 Pa, 2 h post-mixing) were investigated. In our system, thiol/acrylate reaction was initiated rapidly upon mixing of HA-SH/HA-AES to establish thioether crosslinks with neighboring ester groups, and spontaneous sulfhydryl oxidation occurred slowly over several days to install a secondary network. The concurrent reactions cooperatively create a cell-permissive network to allow for cell expansion and aggregation. Multicellular spheroids formed readily from a robust ductal epithelial cell line (Madin-Darby Canine Kidney, MDCK cells) in all hydrogel formulations investigated. Primary salivary human stem/progenitor cells (hS/PCs), on the other hand, are sensitive to the synthetic extracellular environment, and organized acini-like structures with an average diameter of 50 µm were obtained only in gels with G' ≤ 216 Pa and a thiol/acrylate ratio ≥18. The spheroid size and size distribution were dependent on the HA content in the hydrogel. Cells in hS/PC spheroids formed tight junctions (occludin), remained viable and proliferative, secreted structural proteins (collagen IV and laminin) found in the basement membrane and maintained key stem/progenitor markers. We conclude that incorporation of time-dependent, dynamic features into a covalently crosslinked HA network produces an adaptable hydrogel framework that promotes hS/PC assembly and supports early aspects of salivary morphogenesis, key to reconstitution of a fully functional implantable salivary gland.

8.
Biomater Sci ; 4(4): 592-604, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878077

RESUMO

The salivary gland is a complex, secretory tissue that produces saliva and maintains oral homeostasis. Radiation induced salivary gland atrophy, manifested as "dry mouth" or xerostomia, poses a significant clinical challenge. Tissue engineering recently has emerged as an alternative, long-term treatment strategy for xerostomia. In this review, we summarize recent efforts towards the development of functional and implantable salivary glands utilizing designed polymeric substrates or synthetic matrices/scaffolds. Although the in vitro engineering of a complex implantable salivary gland is technically challenging, opportunities exist for multidisciplinary teams to assemble implantable and secretory tissue modules by combining stem/progenitor cells found in the adult glands with biomimetic and cell-instructive materials.


Assuntos
Materiais Biocompatíveis/química , Regeneração/fisiologia , Doenças das Glândulas Salivares/terapia , Glândulas Salivares/fisiopatologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Adulto , Materiais Biocompatíveis/farmacologia , Humanos , Glândulas Salivares/química , Glândulas Salivares/crescimento & desenvolvimento , Células-Tronco/química , Xerostomia/fisiopatologia
9.
Tissue Eng Part A ; 19(13-14): 1610-20, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23442148

RESUMO

Radiation treatment in patients with head and neck tumors commonly results in hyposalivation and xerostomia due to the loss of fluid-secreting salivary acinar cells. Patients develop susceptibility to oral infections, dental caries, impaired speech and swallowing, reducing the quality of life. Clinical management is largely unsatisfactory. The development of a tissue-engineered, implantable salivary gland will greatly benefit patients suffering from xerostomia. This report compares the ability of a 2.5-dimensional (2.5D) and a three-dimensional (3D) hyaluronic acid (HA)-based culture system to support functional salivary units capable of producing fluid and phenotypic proteins. Parotid cells seeded on 2.5D, as well as those encapsulated in 3D HA hydrogels, self-assembled into acini-like structures and expressed functional neurotransmitter receptors. Structures in 3D hydrogels merged to form organized 50 µm spheroids that could be maintained in culture for over 100 days and merged to form structures over 500 µm in size. Treatment of acini-like structures with the ß-adrenergic agonists norepinephrine or isoproterenol increased granule production and α-amylase staining in treated structures, demonstrating regain of protein secretion. Upon treatment with the M3 muscarinic agonist acetylcholine, acini-like structures activated the fluid production pathway by increasing intracellular calcium levels. The increase in intracellular calcium seen in structures in the 3D hydrogel culture system was more robust and prolonged than that in 2.5D. To compare the long-term survival and retention of acini-like structures in vivo, cell-seeded 2.5D and 3D hydrogels were implanted into an athymic rat model. Cells in 2.5D failed to maintain organized acini-like structures and dispersed in the surrounding tissue. Encapsulated cells in 3D retained their spheroid structure and structural integrity, along with the salivary biomarkers and maintained viability for over 3 weeks in vivo. This report identifies a novel hydrogel culture system capable of creating and maintaining functional 3D salivary spheroid structures for long periods in vitro that regain both fluid and protein secreting functions and are suitable for tissue restoration.


Assuntos
Neurotransmissores/farmacologia , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Isoproterenol/farmacologia , Masculino , Norepinefrina/farmacologia , Ratos , Glândulas Salivares/efeitos dos fármacos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA