Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 191: 114850, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986831

RESUMO

Food emulsifiers like glycerol monostearate (G) and Tween 80 (TW) are commonly used to help formation and maintain stability of emulsions. However, certain food contaminants and emulsifiers often co-occur in the same food item due to food culture and cooking methods. For this reason, the present study investigated interaction of toxic effect of emulsifiers (G and TW) and process contaminants (acrylamide (AA) and benzo [a]pyrene (BAP)) on zebrafish. Adult zebrafish were exposed to emulsifiers, food contaminants, or the combination through diet for 2 h and 7 days. Oxidative stress and inflammation caused by food contaminants were increased when food emulsifiers were present. These combined treatments also induced more severe morphological changes than the contaminant alone treatments. In the gut, disruption of villi structure and increased number of goblet cells was observed and in the liver there were increased lipid deposition, infiltration of immune cells, glycogen depletion and focal necrosis. Increased accumulation of AA and BAP in the liver and gut were detected after addition of emulsifiers, suggesting that emulsifiers can enhance absorption of diet-borne contaminants. Our results showed food emulsifiers and contaminants can interact synergistically and increase risk.


Assuntos
Emulsificantes , Contaminação de Alimentos , Inflamação , Estresse Oxidativo , Peixe-Zebra , Animais , Estresse Oxidativo/efeitos dos fármacos , Emulsificantes/toxicidade , Inflamação/induzido quimicamente , Inflamação/metabolismo , Contaminação de Alimentos/análise , Benzo(a)pireno/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Acrilamida/toxicidade , Polissorbatos/toxicidade
2.
NPJ Biofilms Microbiomes ; 10(1): 14, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402294

RESUMO

Dental caries, a highly prevalent oral disease, impacts a significant portion of the global population. Conventional approaches that indiscriminately eradicate microbes disrupt the natural equilibrium of the oral microbiota. In contrast, biointervention strategies aim to restore this balance by introducing beneficial microorganisms or inhibiting cariogenic ones. Over the past three decades, microbial preparations have garnered considerable attention in dental research for the prevention and treatment of dental caries. However, unlike related pathologies in the gastrointestinal, vaginal, and respiratory tracts, dental caries occurs on hard tissues such as tooth enamel and is closely associated with localized acid overproduction facilitated by cariogenic biofilms. Therefore, it is insufficient to rely solely on previous mechanisms to delineate the role of microbial preparations in the oral cavity. A more comprehensive perspective should involve considering the concepts of cariogenic biofilms. This review elucidates the latest research progress, mechanisms of action, challenges, and future research directions regarding probiotics, prebiotics, synbiotics, and postbiotics for the prevention and treatment of dental caries, taking into account the unique pathogenic mechanisms of dental caries. With an enhanced understanding of oral microbiota, personalized microbial therapy will emerge as a critical future research trend.


Assuntos
Cárie Dentária , Microbiota , Probióticos , Simbióticos , Feminino , Humanos , Prebióticos , Cárie Dentária/prevenção & controle , Probióticos/uso terapêutico , Boca
3.
Bioresour Technol ; 357: 127376, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35623603

RESUMO

Lignocellulosic paper waste constitutes a major waste stream globally, which should be valorised for chemical production. However, paper properties (e.g., feedstock composition, cellulosic crystallinity, and thermal stability/degradability) vary with raw materials and pulping processes. This study investigated levulinic acid (LA), hydroxymethylfurfural (HMF), and furfural production by H2SO4 and FeCl3 catalysed conversion of nine types of paper wastes in a green solvent system (1:1 γ-valerolactone/water). At 160-180 °C for 1-20 min, ∼23-27 wt% LA yield was achieved from sanitary papers, tracing/parchment paper, and paper food box mainly containing crystalline cellulose, while a lower LA yield (∼10-20 wt%) was obtained from other paper wastes with high contents of ash and lignin. A higher selectivity towards HMF (∼12 mol%) was achieved in the presence of FeCl3. A furfural yield of âˆ¼ 4-7.5 wt% was also obtained from the hemicellulose content. This study elucidates crucial factors and desirable characteristics of paper waste for catalytic valorisation.


Assuntos
Furaldeído , Ácidos Levulínicos , Cloretos , Compostos Férricos , Furaldeído/análogos & derivados , Furaldeído/química , Lignina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA