Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 100(9): 1262-1275, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601355

RESUMO

Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.


Assuntos
Cricetinae/virologia , Modelos Animais de Doenças , Encefalomielite/virologia , Enterovirus Humano A/fisiologia , Doença de Mão, Pé e Boca/virologia , Boca/virologia , Animais , Antígenos Virais/metabolismo , Criança , Encefalomielite/diagnóstico , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Fezes/virologia , Doença de Mão, Pé e Boca/diagnóstico , Humanos , Imuno-Histoquímica , Hibridização In Situ , Boca/patologia , Mucosa Bucal/patologia , Mucosa Bucal/virologia , RNA Viral/genética , Sensibilidade e Especificidade
2.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263272

RESUMO

Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are closely related enteroviruses that cause the same hand, foot, and mouth disease (HFMD), but neurological complications occur only very rarely in CV-A16 compared to EV-A71 infections. To elucidate host responses that may be able to explain these differences, we performed transcriptomic analysis and real-time quantitative PCR (RT-qPCR) in CV-A16-infected neuroblastoma cells (SK-N-SH), and the results showed that the radical S-adenosylmethionine domain containing 2 (RSAD2) was the highest upregulated gene in the antimicrobial pathway. Increased RSAD2 expression was correlated with reduced viral replication, while RSAD2 knockdown cells were correlated with increased replication. EV-A71 replication showed no apparent correlation to RSAD2 expressions. Absent in melanoma 2 (AIM2), which is associated with pyroptotic cell death, was upregulated in EV-A71-infected neurons but not in CV-A16 infection, suggesting that the AIM2 inflammasome played a significant role in suppressing EV-A71 replication. Chimeric viruses derived from CV-A16 and EV-A71 but containing swapped 5' nontranslated regions (5' NTRs) showed that RSAD2 expression/viral replication and AIM2 expression/viral replication patterns may be linked to the 5' NTRs of parental viruses. Differences in secondary structure of internal ribosomal entry sites within the 5' NTR may be responsible for these findings. Overall, our results suggest that CV-A16 and EV-A71 elicit different host responses to infection, which may help explain the apparent lower incidence of CV-A16-associated neurovirulence in HFMD outbreaks compared to EV-A71 infection.IMPORTANCE Although coxsackievirus A16 (CV-A16) and enterovirus A17 (EV-A71) both cause hand, foot, and mouth disease, EV-A71 has emerged as a leading cause of nonpolio, enteroviral fatal encephalomyelitis among young children. The significance of our research is in the identification of the possible differing and novel mechanisms of CV-A16 and EV-A71 inhibition in neuronal cells that may impact viral neuropathogenesis. We further showed that viral 5' NTRs may play significant roles in eliciting different host response mechanisms.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Ligação a DNA/metabolismo , Enterovirus Humano A/fisiologia , Enterovirus Humano C/fisiologia , Neurônios/metabolismo , Proteínas/metabolismo , Replicação Viral/fisiologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Humanos , Neurônios/patologia , Neurônios/virologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética
3.
Arch Virol ; 162(3): 727-737, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27878462

RESUMO

Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are closely related enteroviruses that cause hand, foot and mouth disease (HFMD) in children. Serious neurological complications almost always occur in EV-A71 infection, but are rare in CV-A16 infection. Based on the hypothesis that this may be because EV-A71 infects neuronal cells more easily than CV-A16, we compared virus infection, replication and spread of EV-A71 and CV-A16 in SK-N-SH cells. We found that CV-A16 invariably showed significantly lower replication and caused less necrotic cell death in SK-N-SH cells, compared with EV-A71. This was not due to a lower proportion of CV-A16-infected cells, since both viruses showed similar proportions of infected cells at all time points analyzed. Furthermore, reduced replication of CV-A16 in SK-N-SH cells does not appear to be due to limited viral receptor availability, which might limit viral entry, because experiments with viral RNA-transfected cells showed the same results as for live virus infections. On the other hand, no differences were observed between EV-A71 and CV-A16 in RD cells and results were generally similar in RD cells for both viruses. Taken together, our findings suggest that the poor growth of CV-A16 and EV-A71in SK-N-SH cells, compared with RD cells, may be due to cell type-specific restrictions on viral replication and spread. Furthermore, the lower viral replication and necrotic cell death in CV-A16-infected SK-N-SH cells, compared with EV-A71-infected SK-N-SH cells, is consistent with the lower prevalence of neurotropism observed in CV-A16-associated HFMD outbreaks. Nonetheless, in vivo data and more extensive comparisons of different viral strains are essential to confirm our findings.


Assuntos
Enterovirus Humano A/fisiologia , Doença de Mão, Pé e Boca/virologia , Neurônios/virologia , Linhagem Celular , Replicação do DNA , Enterovirus , Enterovirus Humano A/química , Enterovirus Humano A/classificação , Enterovirus Humano A/crescimento & desenvolvimento , Humanos , Cinética , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral
4.
Proc Natl Acad Sci U S A ; 110(36): 14753-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959904

RESUMO

Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection.


Assuntos
Doenças do Sistema Nervoso Central/genética , Modelos Animais de Doenças , Infecções por Enterovirus/genética , Proteínas de Membrana Lisossomal/genética , Receptores Depuradores/genética , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular Tumoral , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/virologia , Chlorocebus aethiops , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Imuno-Histoquímica , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Transgênicos , Receptores Depuradores/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/virologia , Fatores de Tempo , Células Vero
5.
Am J Pathol ; 184(3): 714-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24378407

RESUMO

Enterovirus 71 (EV71; family Picornaviridae, species human Enterovirus A) usually causes hand, foot, and mouth disease, which may rarely be complicated by fatal encephalomyelitis. We investigated extra-central nervous system (extra-CNS) tissues capable of supporting EV71 infection and replication, and have correlated tissue infection with expression of putative viral entry receptors, scavenger receptor B2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL-1). Formalin-fixed, paraffin-embedded CNS and extra-CNS tissues from seven autopsy cases were examined by IHC and in situ hybridization to evaluate viral antigens and RNA. Viral receptors were identified with IHC. In all seven cases, the CNS showed stereotypical distribution of inflammation and neuronal localization of viral antigens and RNA, confirming the clinical diagnosis of EV71 encephalomyelitis. In six cases in which tonsillar tissues were available, viral antigens and/or RNA were localized to squamous epithelium lining the tonsillar crypts. Tissues from the gastrointestinal tract, pancreas, mesenteric nodes, spleen, and skin were all negative for viral antigens/RNA. Our novel findings strongly suggest that tonsillar crypt squamous epithelium supports active viral replication and represents an important source of viral shedding that facilitates person-to-person transmission by both the fecal-oral or oral-oral routes. It may also be a portal for viral entry. A correlation between viral infection and SCARB2 expression appears to be more significant than for PSGL-1 expression.


Assuntos
Encefalomielite/virologia , Enterovirus Humano A/fisiologia , Proteínas de Membrana Lisossomal/metabolismo , Glicoproteínas de Membrana/metabolismo , Tonsila Palatina/virologia , Receptores Depuradores/metabolismo , Replicação Viral , Adolescente , Adulto , Sistema Nervoso Central/virologia , Criança , Epitélio/virologia , Humanos , Inflamação , Masculino , Boca , RNA Viral/genética , Receptores Virais/metabolismo , Adulto Jovem
6.
Virol J ; 12: 85, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26050791

RESUMO

BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response. METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients. RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed. CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.


Assuntos
Infecções por Enterovirus/diagnóstico , Enterovirus/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Ásia , Criança , Pré-Escolar , Enterovirus/classificação , Enterovirus/genética , Feminino , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex/normas , Faringe/virologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Reto/virologia , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Sensibilidade e Especificidade
7.
Nanomedicine (Lond) ; : 1-21, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140594

RESUMO

Aim: To develop a trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against hand foot and mouth disease (HFMD) and assess its immunogenicity in mice. Materials & methods: Trivalent plasmid carrying the VP1 and VP2 genes of EV-A71, VP1 gene of CV-A16 was encapsulated in Chitosan-TPP nanoparticles through ionic gelation. In vitro characterization and in vivo immunization studies of the CS-TPP-NPs (pIRES-VP121) were performed. Results: Mice administered with CS-TPP NPs (pIRES-VP121) intramuscularly were observed to have the highest IFN-γ response. Sera from mice immunized with the naked pDNA and CS-TPP-NPs (pIRES-VP121) demonstrated good viral clearance against wild-type EV-A71 and CV-A16 in RD cells. Conclusion: CS-TPP-NPs (pIRES-VP121) could serve as a prototype for future development of multivalent HFMD DNA vaccine candidates.


[Box: see text].

8.
Electrophoresis ; 34(17): 2495-502, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23784731

RESUMO

Confirmation of oral squamous cell cancer (OSCC) currently relies on histological analysis, which does not provide clear indication of cancer development from precancerous lesions. In the present study, whole saliva proteins of patients with OSCC (n = 12) and healthy subjects (n = 12) were separated by 2DE to identify potential candidate biomarkers that are much needed to improve detection of the cancer. The OSCC patients' 2DE saliva protein profiles appeared unique and different from those obtained from the healthy subjects. The patients' saliva α1-antitrypsin (AAT) and haptoglobin (HAP) ß chains were resolved into polypeptide spots with increased microheterogeneity, although these were not apparent in their sera. Their 2DE protein profiles also showed presence of hemopexin and α-1B glycoprotein, which were not detected in the profiles of the control saliva. When subjected to densitometry analysis, significant altered levels of AAT, complement C3, transferrin, transthyretin, and ß chains of fibrinogen and HAP were detected. The increased levels of saliva AAT, HAP, complement C3, hemopexin, and transthyretin in the OSCC patients were validated by ELISA. The strong association of AAT and HAP with OSCC was further supported by immunohistochemical staining of cancer tissues. The differently expressed saliva proteins may be useful complementary biomarkers for the early detection and/or monitoring of OSCC, although this requires validation in clinically representative populations.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/química , Carcinoma de Células Escamosas/química , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Haptoglobinas/química , Haptoglobinas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Pessoa de Meia-Idade , Neoplasias Bucais/química , Proteômica/métodos , Proteínas e Peptídeos Salivares/química , Língua/química , Língua/metabolismo , Língua/patologia , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo
9.
J Virol ; 84(1): 661-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19864378

RESUMO

Enterovirus 71 (EV71) causes childhood hand, foot, and mouth disease and neurological complications, and no vaccines or therapeutic drugs are currently available. Formaldehyde-inactivated whole-virus vaccines derived from EV71 clinical isolates and a mouse-adapted virus (MAV) were tested in a mouse model of EV71 encephalomyelitis. After only two immunizations, given to mice at 1 and 7 days of age, the MAV vaccine protected mice at 14 days of age from disease. Tissues from immunized mice were negative for virus by viral culture, reverse transcriptase PCR, immunohistochemistry analysis, and in situ hybridization. Cross-neutralizing EV71 antibodies to strains with genotypes B3, B4, and C1 to C5 generated in immunized adult mice were able to passively protect 14-day-old mice from disease.


Assuntos
Encefalomielite/prevenção & controle , Infecções por Enterovirus/prevenção & controle , Enterovirus , Vacinas de Produtos Inativados/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Proteção Cruzada , Modelos Animais de Doenças , Formaldeído/farmacologia , Genótipo , Humanos , Imunização , Camundongos , Vacinas de Produtos Inativados/uso terapêutico
10.
Life Sci ; 287: 120097, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715144

RESUMO

AIMS: Enterovirus A71 (EV-A71) is an etiological agent of hand foot and mouth disease (HFMD) and has the potential to cause severe neurological infections in children. L-SP40 peptide was previously known to inhibit EV-A71 by prophylactic action. This study aimed to identify the mechanism of inhibition in Rhabdomyosarcoma (RD) cells and in vivo therapeutic potential of L-SP40 peptide in a murine model. MAIN METHODS: A pull-down assay was performed to identify the binding partner of the L-SP40 peptide. Co-immunoprecipitation and co-localization assays with the L-SP40 peptide were employed to confirm the receptor partner in RD cells. The outcomes were validated using receptor knockdown and antibody blocking assays. The L-SP40 peptide was further evaluated for the protection of neonatal mice against lethal challenge by mouse-adapted EV-A71. KEY FINDINGS: The L-SP40 peptide was found to interact and co-localize with nucleolin, the key attachment receptor of Enteroviruses A species, as demonstrated in the pull-down, co-immunoprecipitation and co-localization assays. Knockdown of nucleolin from RD cells led to a significant reduction of 3.5 logs of viral titer of EV-A71. The L-SP40 peptide demonstrated 80% protection of neonatal mice against lethal challenge by the mouse-adapted virus with a drastic reduction in the viral loads in the blood (~4.5 logs), skeletal muscles (1.5 logs) and brain stem (1.5 logs). SIGNIFICANCE: L-SP40 peptide prevented severe hind limb paralysis and death in suckling mice and could serve as a potential broad-spectrum antiviral candidate to be further evaluated for safety and potency in future clinical trials against EV-A71.


Assuntos
Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos ICR , Fragmentos de Peptídeos/administração & dosagem , Ligação Proteica/fisiologia , Resultado do Tratamento , Nucleolina
11.
Sci Rep ; 9(1): 4805, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886246

RESUMO

Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.


Assuntos
Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Vacinas Virais/administração & dosagem , Virulência/genética , Animais , Antígenos Virais/análise , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Enterovirus Humano A/genética , Enterovirus Humano A/isolamento & purificação , Genoma Viral/genética , Doença de Mão, Pé e Boca/diagnóstico , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/virologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , Camundongos , MicroRNAs/genética , Mutação , RNA Viral/isolamento & purificação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Carga Viral , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral/imunologia
12.
Emerg Microbes Infect ; 6(7): e62, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28698666

RESUMO

Enterovirus A71 (EV-A71) causes hand-foot-and-mouth disease (HFMD), which may be complicated by fatal encephalomyelitis. Although fecal-oral or oral-oral routes are important in person-to-person transmission, how viral shedding and exposure may predispose individuals to infection remains unknown. We investigated person-to-person transmission by using a model of HFMD and encephalomyelitis based on EV-A71 oral infection of 2-week-old hamsters. Animals (index animals) infected with 104 50% cell culture infective doses of virus uniformly developed severe disease four days post-infection (dpi), whereas littermate contacts developed severe disease after six to seven days of exposure to index animals. Virus was detected in oral washes and feces at 3-4 dpi in index animals and at three to eight days after exposure to index animals in littermate contact animals. In a second experiment, non-littermate contact animals exposed for 8 or 12 h to index animals developed the disease six and four days post-exposure, respectively. Tissues from killed index and contact animals, studied by light microscopy, immunohistochemistry and in situ hybridization, exhibited mild inflammatory lesions and/or viral antigens/RNA in the squamous epithelia of the oral cavity, tongue, paws, skin, esophagus, gastric epithelium, salivary glands, lacrimal glands, central nervous system neurons, muscles (skeletal, cardiac and smooth muscles) and liver. Orally shed viruses were probably derived from infected oral mucosa and salivary glands, whereas fecal viruses may have derived from these sites as well as from esophageal and gastric epithelia. Asymptomatic seroconversion in exposed mother hamsters was demonstrated. Our hamster model should be useful in studying person-to-person EV-A71 transmission and how drugs and vaccines may interrupt transmission.


Assuntos
Modelos Animais de Doenças , Encefalomielite/virologia , Infecções por Enterovirus/transmissão , Doença de Mão, Pé e Boca/fisiopatologia , Doença de Mão, Pé e Boca/transmissão , Animais , Infecções Assintomáticas , Infecções do Sistema Nervoso Central/virologia , Cricetinae , Infecções por Enterovirus/virologia , Células Epiteliais/virologia , Fezes/virologia , Doença de Mão, Pé e Boca/complicações , Doença de Mão, Pé e Boca/virologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Inflamação/patologia , Mães , Boca/virologia , Mucosa Bucal/virologia , Músculos/virologia , Glândulas Salivares/virologia , Pele/virologia , Eliminação de Partículas Virais
13.
Sci Rep ; 7(1): 5845, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724943

RESUMO

Encephalomyelitis is a well-known complication of hand, foot, and mouth disease (HFMD) due to Enterovirus 71 (EV71) infection. Viral RNA/antigens could be detected in the central nervous system (CNS) neurons in fatal encephalomyelitis but the mechanisms of neuronal cell death is not clearly understood. We investigated the role of absent in melanoma 2 (AIM2) inflammasome in neuronal cell death, and its relationship to viral replication. Our transcriptomic analysis, RT-qPCR, Western blot, immunofluorescence and flow cytometry studies consistently showed AIM2 gene up-regulation and protein expression in EV-A71-infected SK-N-SH cells. Downstream AIM2-induced genes, CARD16, caspase-1 and IL-1ß were also up-regulated and caspase-1 was activated to form cleaved caspase-1 p20 subunits. As evidenced by 7-AAD positivity, pyroptosis was confirmed in infected cells. Overall, these findings have a strong correlation with decreases in viral titers, copy numbers and proteins, and reduced proportions of infected cells. AIM2 and viral antigens were detected by immunohistochemistry in infected neurons in inflamed areas of the CNS in EV-A71 encephalomyelitis. In infected AIM2-knockdown cells, AIM2 and related downstream gene expressions, and pyroptosis were suppressed, resulting in significantly increased virus infection. These results support the notion that AIM2 inflammasome-mediated pyroptosis is an important mechanism of neuronal cell death and it could play an important role in limiting EV-A71 replication.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Enterovirus/fisiologia , Inflamassomos/metabolismo , Neurônios/virologia , Piroptose , Replicação Viral , Antígenos/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Encefalomielite/patologia , Encefalomielite/virologia , Perfilação da Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Neurônios/metabolismo , Regulação para Cima/genética
14.
Sci Rep ; 7: 45069, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322333

RESUMO

Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.


Assuntos
Enterovirus Humano A/fisiologia , Infecções por Enterovirus/virologia , Epiderme/virologia , Mucosa Bucal/virologia , Tropismo Viral , Animais , Proliferação de Células , Chlorocebus aethiops , Infecções por Enterovirus/patologia , Epiderme/patologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Queratinócitos/metabolismo , Queratinócitos/virologia , Mucosa Bucal/patologia , Técnicas de Cultura de Órgãos , Células Vero , Replicação Viral
15.
PLoS One ; 11(1): e0147463, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26815859

RESUMO

Enterovirus A71 (EV-A71) causes self-limiting, hand-foot-and-mouth disease (HFMD) that may rarely be complicated by encephalomyelitis. Person-to-person transmission is usually by fecal-oral or oral-oral routes. To study viral replication sites in the oral cavity and other tissues, and to gain further insights into virus shedding and neuropathogenesis, we developed a consistent, orally-infected, 2-week-old hamster model of HFMD and EV-A71 encephalomyelitis. Tissues from orally-infected, 2-week-old hamsters were studied by light microscopy, immunohistochemistry and in situ hybridization to detect viral antigens and RNA, respectively, and by virus titration. Hamsters developed the disease and died after 4-8 days post infection; LD50 was 25 CCID50. Macroscopic cutaneous lesions around the oral cavity and paws were observed. Squamous epithelium in the lip, oral cavity, paw, skin, and esophagus, showed multiple small inflammatory foci around squamous cells that demonstrated viral antigens/RNA. Neurons (brainstem, spinal cord, sensory ganglia), acinar cells (salivary gland, lacrimal gland), lymphoid cells (lymph node, spleen), and muscle fibres (skeletal, cardiac and smooth muscles), liver and gastric epithelium also showed varying amounts of viral antigens/RNA. Intestinal epithelium, Peyer's patches, thymus, pancreas, lung and kidney were negative. Virus was isolated from oral washes, feces, brain, spinal cord, skeletal muscle, serum, and other tissues. Our animal model should be useful to study squamous epitheliotropism, neuropathogenesis, oral/fecal shedding in EV-A71 infection, person-to-person transmission, and to test anti-viral drugs and vaccines.


Assuntos
Enterovirus Humano A , Doença de Mão, Pé e Boca/patologia , Boca/patologia , Pele/patologia , Animais , Cricetinae , Modelos Animais de Doenças , Doença de Mão, Pé e Boca/virologia , Boca/virologia , Mucosa Bucal/patologia , Mucosa Bucal/virologia , Pele/virologia
16.
Brain Pathol ; 25(5): 614-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26276025

RESUMO

Enterovirus A71 (EV-A71) belongs to the species group A in the Enterovirus genus within the Picornaviridae family. EV-A71 usually causes self-limiting hand, foot and mouth disease or herpangina but rarely causes severe neurological complications such as acute flaccid paralysis and encephalomyelitis. The pathology and neuropathogenesis of these neurological syndromes is beginning to be understood. EV-A71 neurotropism for motor neurons in the spinal cord and brainstem, and other neurons, is mainly responsible for central nervous system damage. This review on the general aspects, recent developments and advances of EV-A71 infection will focus on neuropathogenesis and its implications on other neurotropic enteroviruses, such as poliovirus and the newly emergent Enterovirus D68. With the imminent eradication of poliovirus, EV-A71 is likely to replace it as an important neurotropic enterovirus of worldwide importance.


Assuntos
Encéfalo/virologia , Encefalite Viral/patologia , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/patologia , Animais , Encéfalo/patologia , Infecções por Coxsackievirus/patologia , Enterovirus Humano D/patogenicidade , Humanos , Neurônios/patologia , Neurônios/virologia , Poliomielite/patologia
17.
J Virol Methods ; 215-216: 30-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704598

RESUMO

Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.


Assuntos
Enterovirus Humano A/classificação , Enterovirus Humano A/genética , Genoma Viral , Doença de Mão, Pé e Boca/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pré-Escolar , Enterovirus Humano A/isolamento & purificação , Variação Genética , Humanos , Vietnã
18.
J Neuropathol Exp Neurol ; 73(11): 999-1008, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25289894

RESUMO

Enterovirus 71 (EV71)-associated hand, foot, and mouth disease may be complicated by encephalomyelitis. We investigated EV71 brainstem infection and whether this infection could be ameliorated by passive immunization in a mouse model. Enterovirus 71 was injected into unilateral jaw/facial muscles of 2-week-old mice, and hyperimmune sera were given before or after infection. Harvested tissues were studied by light microscopy, immunohistochemistry, in situ hybridization, and viral titration. In unimmunized mice, viral antigen and RNA were detected within 24 hours after infection only in ipsilateral cranial nerves, motor trigeminal nucleus, reticular formation, and facial nucleus; viral titers were significantly higher in the brainstem than in the spinal cord samples. Mice given preinfection hyperimmune serum showed a marked reduction of ipsilateral viral antigen/RNA and viral titers in the brainstem in a dose-dependent manner. With optimum hyperimmune serum given after infection, brainstem infection was significantly reduced in a time-dependent manner. A delay in disease onset and a reduction of disease severity and mortality were also observed. Thus, EV71 can directly infect the brainstem, including the medulla, via cranial nerves, most likely by retrograde axonal transport. This may explain the sudden cardiorespiratory collapse in human patients with fatal encephalomyelitis. Moreover, our results suggest that passive immunization may still benefit EV71-infected patients who have neurologic complications.


Assuntos
Tronco Encefálico/virologia , Nervos Cranianos/virologia , Enterovirus Humano A/isolamento & purificação , Infecções por Enterovirus/prevenção & controle , Imunização Passiva/métodos , Animais , Transporte Axonal/fisiologia , Tronco Encefálico/metabolismo , Nervos Cranianos/metabolismo , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Camundongos , Camundongos Endogâmicos ICR
19.
PLoS Negl Trop Dis ; 8(5): e2876, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24854350

RESUMO

BACKGROUND: From the 17th to 19th January 2012, a group of 92 college students and teachers attended a retreat in a hotel located on Pangkor Island, off the west coast of Peninsular Malaysia. Following the onset of symptoms in many participants who presented to our institute, an investigation was undertaken which ultimately identified Sarcocystis nesbitti as the cause of this outbreak. METHODOLOGY/PRINCIPAL FINDINGS: All retreat participants were identified, and clinical and epidemiological information was obtained via clinical review and self-reported answers to a structured questionnaire. Laboratory, imaging and muscle biopsy results were evaluated and possible sources of exposure, in particular water supply, were investigated. At an average of 9-11 days upon return from the retreat, 89 (97%) of the participants became ill. A vast majority of 94% had fever with 57% of these persons experiencing relapsing fever. Myalgia was present in 91% of patients. Facial swelling from myositis of jaw muscles occurred in 9 (10%) patients. The median duration of symptoms was 17 days (IQR 7 to 30 days; range 3 to 112). Out of 4 muscle biopsies, sarcocysts were identified in 3. S. nesbitti was identified by PCR in 3 of the 4 biopsies including one biopsy without observed sarcocyst. Non-Malaysians had a median duration of symptoms longer than that of Malaysians (27.5 days vs. 14 days, p = 0.001) and were more likely to experience moderate or severe myalgia compared to mild myalgia (83.3% vs. 40.0%, p = 0.002). CONCLUSIONS/SIGNIFICANCE: The similarity of the symptoms and clustered time of onset suggests that all affected persons had muscular sarcocystosis. This is the largest human outbreak of sarcocystosis ever reported, with the specific Sarcocystis species identified. The largely non-specific clinical features of this illness suggest that S. nesbitti may be an under diagnosed infection in the tropics.


Assuntos
Surtos de Doenças , Miosite/epidemiologia , Sarcocistose/epidemiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Febre/parasitologia , Humanos , Imageamento por Ressonância Magnética , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Miosite/diagnóstico , Miosite/parasitologia , Recidiva , Sarcocystis , Sarcocistose/diagnóstico , Sarcocistose/parasitologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA