Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Nanobiotechnology ; 20(1): 536, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539809

RESUMO

Despite significant progress in synthetic polymer chemistry and in control over tuning the structures and morphologies of nanoparticles, studies on morphologic design of nanomaterials for the purpose of optimizing antimicrobial activity have yielded mixed results. When designing antimicrobial materials, it is important to consider two distinctly different modes and mechanisms of activity-those that involve direct interactions with bacterial cells, and those that promote the entry of nanomaterials into infected host cells to gain access to intracellular pathogens. Antibacterial activity of nanoparticles may involve direct interactions with organisms and/or release of antibacterial cargo, and these activities depend on attractive interactions and contact areas between particles and bacterial or host cell surfaces, local curvature and dynamics of the particles, all of which are functions of nanoparticle shape. Bacteria may exist as spheres, rods, helices, or even in uncommon shapes (e.g., box- and star-shaped) and, furthermore, may transform into other morphologies along their lifespan. For bacteria that invade host cells, multivalent interactions are involved and are dependent upon bacterial size and shape. Therefore, mimicking bacterial shapes has been hypothesized to impact intracellular delivery of antimicrobial nanostructures. Indeed, designing complementarities between the shapes of microorganisms with nanoparticle platforms that are designed for antimicrobial delivery offers interesting new perspectives toward future nanomedicines. Some studies have reported improved antimicrobial activities with spherical shapes compared to non-spherical constructs, whereas other studies have reported higher activity for non-spherical structures (e.g., rod, discoid, cylinder, etc.). The shapes of nano- and microparticles have also been shown to impact their rates and extents of uptake by mammalian cells (macrophages, epithelial cells, and others). However, in most of these studies, nanoparticle morphology was not intentionally designed to mimic specific bacterial shape. Herein, the morphologic designs of nanoparticles that possess antimicrobial activities per se and those designed to deliver antimicrobial agent cargoes are reviewed. Furthermore, hypotheses beyond shape dependence and additional factors that help to explain apparent discrepancies among studies are highlighted.


Assuntos
Anti-Infecciosos , Nanopartículas , Nanoestruturas , Animais , Nanopartículas/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros , Transporte Biológico , Mamíferos
2.
Nano Lett ; 21(12): 4990-4998, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34115938

RESUMO

Platelet-like and cylindrical nanostructures from sugar-based polymers are designed to mimic the aspect ratio of bacteria and achieve uroepithelial cell binding and internalization, thereby improving their potential for local treatment of recurrent urinary tract infections. Polymer nanostructures, derived from amphiphilic block polymers composed of zwitterionic poly(d-glucose carbonate) and semicrystalline poly(l-lactide) segments, were constructed with morphologies that could be tuned to enhance uroepithelial cell binding. These nanoparticles exhibited negligible cytotoxicity, immunotoxicity, and cytokine adsorption, while also offering substantial silver cation loading capacity, extended release, and in vitro antimicrobial activity (as effective as free silver cations) against uropathogenic Escherichia coli. In comparison to spherical analogues, cylindrical and platelet-like nanostructures engaged in significantly higher association with uroepithelial cells, as measured by flow cytometry; despite their larger size, platelet-like nanostructures maintained the capacity for cell internalization. This work establishes initial evidence of degradable platelet-shaped nanostructures as versatile therapeutic carriers for treatment of epithelial infections.


Assuntos
Nanopartículas , Polímeros , Antibacterianos/farmacologia , Prata , Açúcares
3.
J Am Chem Soc ; 141(50): 19542-19545, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31820965

RESUMO

As a rapid, controllable, and easily transferrable approach to the preparation of antimicrobial nanoparticle systems, a one-step, light-driven procedure was developed to produce asymmetric hybrid inorganic-organic nanoparticles (NPs) directly from a homogeneous Ag/polymer mixture. An amphiphilic triblock polymer was designed and synthesized to build biocompatible NPs, consisting of poly(ethylene oxide) (PEO), carboxylic acid-functionalized polyphosphoester (PPE), and poly(l-lactide) (PLLA). Unexpectedly, snowman-like asymmetric nanostructures were subsequently obtained by simply loading silver cations into the polymeric micelles together with purification via centrifugation. With an understanding of the chemistry of the asymmetric NP formation, a controllable preparation strategy was developed by applying UV irradiation. A morphology transition was observed by transmission electron microscopy over the UV irradiation time, from small silver NPs distributed inside the micelles into snowman-like asymmetric NPs, which hold promise for potential antimicrobial applications with their unique two-stage silver release profiles.


Assuntos
Luz , Nanopartículas/química , Polímeros/química , Prata/química , Processos Fotoquímicos
4.
Langmuir ; 35(5): 1503-1512, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30346776

RESUMO

A zwitterionic polyphosphoester (zPPE), specifically l-cysteine-functionalized poly(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane (zPBYP), has been developed as a poly(ethylene glycol) (PEG) alternative coating material for gold nanoparticles (AuNPs), the most extensively investigated metal nanoparticulate platform toward molecular imaging, photothermal therapy, and drug delivery applications. Thiol-yne conjugation of cysteine transformed an initial azido-terminated and alkynyl-functionalized PBYP homopolymer into zPBYP, offering hydrolytic degradability, biocompatibility, and versatile reactive moieties for installation of a range of functional groups. Despite minor degradation during purification, zPPEs were able to stabilize AuNPs presumably through multivalent interactions between combinations of the side chain zwitterions (thioether and phosphoester groups of the zPPEs with the AuNPs). 31P NMR studies in D2O revealed ca. 20% hydrolysis of the phosphoester moieties of the repeat units had occurred during the workup and purification by aqueous dialysis at pH 3 over ca. 1 d, as observed by the 31P signal of the phosphotriesters resonating at ca. -0.5 to -1.7 shifting downfield to ca. 1.1 to -0.4 ppm, attributed to transformation to phosphates. Further hydrolysis of side chain and backbone units proceeded to an extent of ca. 75% over the next 2 d in nanopure water (pH 5-6). The NMR degradation results were consistent with the broadening and red-shift of the surface plasmon resonance (SPR) observed by UV-vis spectroscopy of the zPPE-coated AuNPs in water over time. All AuNP formulations in this study, including those with citrate, PEG, and zPPE coatings, exhibited negligible immunotoxicity, as determined by cytokine overexpression in the presence of the nanostructures relative to those in cell culture medium. Notably, the zPPE-coated AuNPs displayed superior antifouling properties, as assessed by the extent of cytokine adsorption relative to both the PEGylated and citrate-coated AuNPs. Taken together, the physicochemical and biological evaluations of zPPE-coated AuNPs in conjunction with PEGylated and citrate-coated analogues indicate the promise of zPPEs as favorable alternatives to PEG coatings, with negligible immunotoxicity, good antifouling performance, and versatile reactive groups that enable the preparation of highly tailored nanomaterials for diverse applications.


Assuntos
Plásticos Biodegradáveis/química , Materiais Revestidos Biocompatíveis/química , Nanopartículas Metálicas/química , Adsorção , Animais , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/metabolismo , Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/metabolismo , Citocinas/química , Citocinas/metabolismo , Ouro/química , Camundongos , Ligação Proteica , Células RAW 264.7
5.
Biomacromolecules ; 20(1): 109-117, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30179461

RESUMO

Magnolol, a neolignan natural product with antioxidant properties, contains inherent, orthogonal, phenolic, and alkenyl reactive groups that were used in both direct thermoset synthesis, as well as the stepwise synthesis of a small library of monomers, followed by transformation into thermoset materials. Each monomer from the small library was prepared via a single step functionalization reaction of the phenolic groups of magnolol. Thermoset materials were realized through solvent-free, thiol-ene reactions, and the resulting cross-linked materials were each comprised of thioether and ester linkages, with one retaining the hydrophilic phenols from magnolol, another having the phenols protected as an acetonide, and two others incorporating the phenols into additional cross-linking sites via hydrolytically labile carbonates or stable ether linkages. With this diversity of chemical compositions and structures, the thermosets displayed a range of thermomechanical properties including glass transition temperatures, Tg, 29-52 °C, onset of thermal degradation, Td, from about 290-360 °C, and ultimate strength up to 50 MPa. These tunable materials were studied in their degradation and biological properties with the aim of exploiting the antioxidant properties of the natural product. Hydrolytic degradation occurred under basic conditions (pH = 11) in all thermosets, but with kinetics that were dependent upon their chemical structures and mechanical properties: 20% mass loss was observed at 5, 7, 27, and 40 weeks for the thermosets produced from magnolol directly, acetonide-protected magnolol, bis(allyl carbonate)-functionalized magnolol, and bis(allyl ether)-functionalized magnolol, respectively. Isolated degradation products and model compounds displayed antioxidant properties similar to magnolol, as determined by both UV-vis and in vitro reactive oxygen species (ROS) assays. As these magnolol-based thermosets were found to also allow for extended cell culture, these materials may serve as promising degradable biomaterials.


Assuntos
Antioxidantes/síntese química , Plásticos Biodegradáveis/síntese química , Compostos de Bifenilo/química , Lignanas/síntese química , Polímeros Responsivos a Estímulos/síntese química , Ácido 3-Mercaptopropiônico/análogos & derivados , Ácido 3-Mercaptopropiônico/química , Animais , Antioxidantes/farmacologia , Bovinos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Lignanas/química , Fenóis/química , Propilenoglicóis/química , Estresse Mecânico , Temperatura
6.
Biomacromolecules ; 19(4): 1212-1222, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29526096

RESUMO

To expand the range of functional polymer materials to include fully hydrolytically degradable systems that bear bioinspired phosphorus-containing linkages both along the backbone and as cationic side chain moieties for packaging and delivery of nucleic acids, phosphonium-functionalized polyphosphoester- block-poly(l-lactide) copolymers of various compositions were synthesized, fully characterized, and their self-assembly into nanoparticles were studied. First, an alkyne-functionalized polyphosphoester- block-poly(l-lactide) copolymer was synthesized via a one pot sequential ring opening polymerization of an alkyne-functionalized phospholane monomer, followed by the addition of l-lactide to grow the second block. Second, the alkynyl side groups of the polyphosphoester block were functionalized via photoinitiated thiol-yne radical addition of a phosphonium-functionalized free thiol. The polymers of varying phosphonium substitution degrees were self-assembled in aqueous buffers to afford formation of well-defined core-shell assemblies with an average size ranging between 30 and 50 nm, as determined by dynamic light scattering. Intracellular delivery of the nanoparticles and their effects on cell viability and capability at enhancing transfection efficiency of nucleic acids (e.g., siRNA) were investigated. Cell viability assays demonstrated limited toxicity of the assembly to RAW 264.7 mouse macrophages, except at high polymer concentrations, where the polymer of high degree of phosphonium functionalization induced relatively higher cytotoxicity. Transfection efficiency was strongly affected by the phosphonium-to-phosphate (P+/P-) ratios of the polymers and siRNA, respectively. The AllStars Hs Cell Death siRNA complexed to the various copolymers at a P+/P- ratio of 10:1 induced comparable cell death to Lipofectamine. These fully degradable nanoparticles might provide biocompatible nanocarriers for therapeutic nucleic acid delivery.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/química , Compostos Organofosforados/química , Polímeros/química , Alcinos/química , Animais , Dioxanos/química , Macrófagos/efeitos dos fármacos , Camundongos , Nanopartículas/administração & dosagem , Fósforo/química , Polímeros/administração & dosagem , Células RAW 264.7 , Compostos de Sulfidrila/química
7.
Nat Prod Rep ; 34(4): 433-459, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28290568

RESUMO

Covering: 2010-Aug. 2016In an effort towards enhancing function and sustainability, natural products have become of interest in the field of polymer chemistry. This review details the blending of chemistries developed through synthetic organic chemistry and polymer chemistry. Through synthetic organic chemical transformations, such as functional group interconversion, a protection/deprotection series, or installation of a functional group, various designs towards novel, synthetic, bio-based polymer systems are described. This review covers several classifications of natural products - oils and fatty acids, terpenes, lignin, and sugar derivatives - focusing on exploring monomers prepared by one or more synthetic steps.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/síntese química , Ácidos Graxos/química , Ácidos Graxos/síntese química , Polímeros/química , Polímeros/síntese química , Terpenos/química , Terpenos/síntese química , Estrutura Molecular
8.
Acc Chem Res ; 48(6): 1620-30, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26011318

RESUMO

The potential immunotoxicity of nanoparticles that are currently being approved, in different phases of clinical trials, or undergoing rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger various components of the immune system unintentionally and lead to serious adverse reactions. Cytokines are one of the useful biomarkers for predicting the effect of biotherapeutics on modulation of the immune system and for screening the immunotoxicity of nanoparticles both in vitro and in vivo, and they were recently found to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for the construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse, and experiments are usually conducted using different assays under specific conditions. As a result, making direct comparisons nearly impossible, and thus, tailoring the properties of nanomaterials on the basis of the available data is challenging. In this Account, the effects of chemical structure, cross-linking, degradability, morphology, concentration, and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with a focus on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized uniquely to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple way to compare the immunotoxicities of various nanomaterials, and the values were found to correlate well with published data. On the basis of the polymeric systems investigated in this study, valuable information has been collected that will aid in the future design of nanomaterials for biomedical applications, including the following: (a) the immunotoxicity of nanomaterials is concentration- and dose-dependent; (b) the synthesis of degradable nanoparticles is essential to decrease toxicity;


Assuntos
Reagentes de Ligações Cruzadas/química , Mineração de Dados , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/imunologia , Nanopartículas/química , Nanopartículas/toxicidade , Polímeros/química , Testes Imunológicos de Citotoxicidade , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Substâncias Macromoleculares/química , Substâncias Macromoleculares/toxicidade
9.
J Am Chem Soc ; 137(5): 2056-66, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25629952

RESUMO

Nanomaterials have great potential to offer effective treatment against devastating diseases by providing sustained release of high concentrations of therapeutic agents locally, especially when the route of administration allows for direct access to the diseased tissues. Biodegradable polyphosphoester-based polymeric micelles and shell cross-linked knedel-like nanoparticles (SCKs) have been designed from amphiphilic block-graft terpolymers, PEBP-b-PBYP-g-PEG, which effectively incorporate high concentrations of paclitaxel (PTX). Well-dispersed nanoparticles physically loaded with PTX were prepared, exhibiting desirable physiochemical characteristics. Encapsulation of 10 wt% PTX, into either micelles or SCKs, allowed for aqueous suspension of PTX at concentrations up to 4.8 mg/mL, as compared to <2.0 µg/mL for the aqueous solubility of the drug alone. Drug release studies indicated that PTX released from these nanostructures was defined through a structure-function relationship, whereby the half-life of sustained PTX release was doubled through cross-linking of the micellar structure to form SCKs. In vitro, physically loaded micellar and SCK nanotherapeutics demonstrated IC50 values against osteosarcoma cell lines, known to metastasize to the lungs (CCH-OS-O and SJSA), similar to the pharmaceutical Taxol formulation. Evaluation of these materials in vivo has provided an understanding of the effects of nanoparticle structure-function relationships on intratracheal delivery and related biodistribution and pharmacokinetics. Overall, we have demonstrated the potential of these novel nanotherapeutics toward future sustained release treatments via administration directly to the sites of lung metastases of osteosarcoma.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/química , Polietilenoglicóis/química , Polímeros/química , Alcinos/química , Animais , Azidas/química , Neoplasias Ósseas/patologia , Catálise , Linhagem Celular Tumoral , Cobre/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Ésteres , Meia-Vida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Micelas , Modelos Moleculares , Conformação Molecular , Osteossarcoma/patologia , Polímeros/metabolismo , Polímeros/farmacocinética , Distribuição Tecidual
10.
Chemistry ; 20(29): 8842-7, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24961389

RESUMO

A facile polymerization of an allyl-functionalized N-carboxyanhydride (NCA) monomer is utilized to construct an A-B-A-type triblock structure containing ß-sheet-rich oligomeric peptide segments tethered by a poly(ethylene oxide) chain, which are capable of dispersing and gelating single-walled carbon nanotubes (SWCNTs) noncovalently in organic solvents, resulting in significant enhancement of the mechanical properties of polypeptide-based organogels.


Assuntos
Géis/química , Nanotubos de Carbono/química , Oligopeptídeos/química , Nanotubos de Carbono/ultraestrutura , Polietilenoglicóis/química , Polimerização , Estrutura Secundária de Proteína
11.
Langmuir ; 30(2): 631-41, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24392760

RESUMO

The successful development of degradable polymeric nanostructures as optical probes for use in nanotheranostic applications requires the intelligent design of materials such that their surface response, degradation, drug delivery, and imaging properties are all optimized. In the case of imaging, optimization must result in materials that allow differentiation between unbound optical contrast agents and labeled polymeric materials as they undergo degradation. In this study, we have shown that use of traditional electrophoretic gel-plate assays for the determination of the purity of dye-conjugated degradable nanoparticles is limited by polymer degradation characteristics. To overcome these limitations, we have outlined a holistic approach to evaluating dye and peptide-polymer nanoparticle conjugation by utilizing steady-state fluorescence, anisotropy, and emission and anisotropy lifetime decay profiles, through which nanoparticle-dye binding can be assessed independently of perturbations, such as those presented during the execution of electrolyte gel-based assays. This approach has been demonstrated to provide an overall understanding of the spectral signature-structure-function relationship, ascertaining key information on interactions between the fluorophore, polymer, and solvent components that have a direct and measurable impact on the emissive properties of the optical probe. The use of these powerful techniques provides feedback that can be utilized to improve nanotheranostics by evaluating dye emissivity in degradable nanotheranostic systems, which has become increasingly important as modern platforms transition to architectures intentionally reliant on degradation and built-in environmental responses.


Assuntos
Meios de Contraste/química , Corantes Fluorescentes/química , Nanopartículas/química , Nanotecnologia , Polímeros/química , Anisotropia , Tamanho da Partícula , Propriedades de Superfície
12.
Macromol Rapid Commun ; 35(4): 437-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24347368

RESUMO

Diblock brush terpolymers (DBTs) with different fluorinated methacrylate-based block segments are synthesized through sequential ring-opening metathesis polymerizations and are used to prepare polymer thin films with predictable film thicknesses. These DBTs exhibit preferable substrate vertical alignments within the films, induced by the relatively lower surface energy of the fluorinated structural components, together with the overall cylindrical morphology of the brush architecture.


Assuntos
Polímeros/química , Metacrilatos/química , Nanotecnologia , Polimerização , Polímeros/síntese química
13.
J Am Chem Soc ; 135(18): 6826-9, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23627278

RESUMO

An organocatalyzed ring-opening polymerization methodology was developed for the preparation of polycarbonates derived from glucose as a natural product starting material. The cyclic 4,6-carbonate monomer of glucose having the 1, 2, and 3 positions methyl-protected was prepared in three steps from a commercially available glucose derivative, and the structure was confirmed by means of NMR and IR spectroscopies, electrospray ionization mass spectrometry (MS), and single-crystal X-ray analysis. Polymerization of the monomer, initiated by 4-methylbenzyl alcohol in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene as the organocatalyst, proceeded effectively in a controlled fashion to afford the polycarbonate with a tunable degree of polymerization, narrow molecular weight distribution, and well-defined end groups, as confirmed by a combination of NMR spectroscopy, gel-permeation chromatography, and MALDI-TOF MS. A distribution of head-to-head, head-to-tail, and tail-to-tail regiochemistries was determined by NMR spectroscopy and tandem MS analysis by electron transfer dissociation. These polycarbonates are of interest as engineering materials because of their origination from renewable resources combined with their amorphous character and relatively high glass transition temperatures as determined by X-ray diffraction and differential scanning calorimetry studies.


Assuntos
Compostos Azabicíclicos/química , Glucose/química , Cimento de Policarboxilato/síntese química , Catálise , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Cimento de Policarboxilato/química
14.
Mol Pharm ; 10(3): 1092-9, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23421959

RESUMO

Paclitaxel-loaded shell cross-linked polymeric nanoparticles having an enzymatically and hydrolytically degradable poly(lactic acid) core and a glutathione-responsive disulfide cross-linked poly(oligoethylene glycol)-containing corona were constructed in aqueous solution and investigated for their stimuli-responsive release of the embedded therapeutics and in vitro cytotoxicity. Paclitaxel release from the nanoparticles in PBS buffer was accelerated in the presence of glutathione at both pH 5.5 and pH 7.4, reaching ca. 65% cumulative drug release after 8 d, whereas only ca. 50% and 35% extents of release were observed in the absence of glutathione at pH 5.5 and pH 7.4, respectively. Enzyme-catalyzed hydrolysis of the nanoparticle core resulted in the degradation of ca. 30% of the poly(lactic acid) core to lactic acid within 12 h, with coincidently triggered paclitaxel release of ca. 37%, as opposed to only ca. 17% release from the uncatalyzed nanoparticles at pH 7.4. While empty nanoparticles did not show any inherent cytotoxicity at the highest tested concentrations, paclitaxel-loaded nanoparticles showed IC50 values that were similar to those of free paclitaxel at 72 h incubation with KB cells and were more efficacious at ca. 3-fold lower IC50 value (0.031 µM vs 0.085 µM) at 2 h of incubation. Against human ovarian adenocarcinoma cells, the paclitaxel-loaded nanoparticles exhibited a remarkable ca. 11-fold lower IC50 than a Taxol-mimicking formulation (0.0007 µM vs 0.008 µM) at 72 h of incubation. These tunable dual-responsive degradable nanoparticles show great promise for delivery of paclitaxel to tumor tissues, given their superior in vitro efficacies compared to that of free paclitaxel and Taxol-mimicking formulations.


Assuntos
Nanopartículas/química , Paclitaxel/química , Polímeros/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa/química , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Polímeros/administração & dosagem
15.
Biomacromolecules ; 14(4): 1018-27, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23510389

RESUMO

In this work, degradable cationic shell cross-linked knedel-like (deg-cSCK) nanoparticles were developed as an alternative platform to replace similar nondegradable cSCK nanoparticles that have been utilized for nucleic acids delivery. An amphiphilic diblock copolymer poly(acrylamidoethylamine)(90)-block-poly(DL-lactide)(40) (PAEA(90)-b-PDLLA(40)) was synthesized, self-assembled in aqueous solution, and shell cross-linked using a hydrolyzable cross-linker to afford deg-cSCKs with an average core diameter of 45 ± 7 nm. These nanoparticles were fluorescently labeled for in vitro tracking. The enzymatic- and hydrolytic-degradability, siRNA binding affinity, cell uptake and cytotoxicity of the deg-cSCKs were evaluated. Esterase-catalyzed hydrolysis of the nanoparticles resulted in the degradation of ca. 24% of the PDLLA core into lactic acid within 5 d, as opposed to only ca. 9% degradation from aqueous solutions of the deg-cSCK nanoparticles in the absence of enzyme. Cellular uptake of deg-cSCKs was efficient, while exhibiting low cytotoxicity with LD50 values of ca. 90 and 30 µg/mL in RAW 264.7 mouse macrophages and MLE 12 cell lines, respectively, ca. 5- to 6-fold lower than the cytotoxicity observed for nondegradable cSCK analogs. Additionally, deg-cSCKs were able to complex siRNA at an N/P ratio as low as 2, and were efficiently able to facilitate cellular uptake of the complexed nucleic acids.


Assuntos
Técnicas de Transferência de Genes , Ácidos Nucleicos/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Sobrevivência Celular , Vetores Genéticos , Macrófagos , Camundongos , Nanopartículas , Polímeros/química , Polímeros/metabolismo , Transfecção
16.
Biomacromolecules ; 14(9): 3346-53, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23957247

RESUMO

A natural product-based polymer platform, having the characteristics of being derived from renewable materials and capable of breaking down, ultimately, into natural byproducts, has been prepared through the ring-opening polymerization (ROP) of a glucose-based bicyclic carbonate monomer. ROP was carried out via chain extension of a polyphosphoester (PPE) macroinitiator in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) organocatalyst to afford the PPE-b-poly(D-glucose carbonate) (PDGC) block copolymer. This new copolymer represents a functional architecture that can be rapidly transformed through thiol-yne reactions along the PPE segment into a diverse variety of amphiphilic polymers, which interestingly display stimuli-sensitive phase behavior in the form of a lower critical solution temperature (LCST). Below the LCST, they undergo self-assembly to form spherical core-shell nanostructures that display a poorly defined core-shell morphology. It is expected that hydrophobic patches are exposed within the micellar corona, reminiscent of the surface complexity of proteins, making these materials of interest for triggered and reversible assembly disassembly processes.


Assuntos
Materiais Biocompatíveis/síntese química , Glucose/análogos & derivados , Nanoestruturas/química , Organofosfatos/síntese química , Poliésteres/síntese química , Catálise , Química Click , Glucose/síntese química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Micelas , Polimerização , Sonicação , Tensoativos/síntese química
17.
Nanomedicine ; 9(7): 912-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23453959

RESUMO

The airway provides a direct route for administration of nanoparticles bearing therapeutic or diagnostic payloads to the lung, however optimization of nanoplatforms for intracellular delivery remains challenging. Poly(ethylene glycol) (PEG) surface modification improves systemic performance but less is known about PEGylated nanoparticles administered to the airway. To test this, we generated a library of cationic, shell crosslinked knedel-like nanoparticles (cSCKs), including PEG (1.5 kDa PEG; 2, 5, 10 molecules/polymer arm) on the outer shell. Delivery of PEGylated cSCK to the mouse airway showed significantly less inflammation in a PEG dose-dependent manner. PEGylation also enhanced the entry of cSCKs in lung alveolar epithelial cells and improved surfactant penetration. The PEGylation effect could be explained by the altered mechanism of endocytosis. While non-PEGylated cSCKs used the clathrin-dependent route for endocytosis, entry of PEGylated cSCK was clathrin-independent. Thus, nanoparticle surface modification with PEG represents an advantageous design for lung delivery. FROM THE CLINICAL EDITOR: In this study, the effects of PEGylation were studied on cross linked knedel-like nanoparticles in drug delivery through the lungs, demonstrating less airway inflammation in the studied model than with non-PEGylated nanoparticles, which suggests an overall favorable profile of PEGylated nanoparticles for alveolar delivery.


Assuntos
Reagentes de Ligações Cruzadas/química , Endocitose , Inflamação/patologia , Pulmão/patologia , Nanopartículas/química , Polietilenoglicóis/química , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Cátions , Linhagem Celular , Sistemas de Liberação de Medicamentos , Espaço Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura
18.
Chem Soc Rev ; 41(7): 2545-61, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22334259

RESUMO

Polymeric nanoparticles-based therapeutics show great promise in the treatment of a wide range of diseases, due to the flexibility in which their structures can be modified, with intricate definition over their compositions, structures and properties. Advances in polymerization chemistries and the application of reactive, efficient and orthogonal chemical modification reactions have enabled the engineering of multifunctional polymeric nanoparticles with precise control over the architectures of the individual polymer components, to direct their assembly and subsequent transformations into nanoparticles of selective overall shapes, sizes, internal morphologies, external surface charges and functionalizations. In addition, incorporation of certain functionalities can modulate the responsiveness of these nanostructures to specific stimuli through the use of remote activation. Furthermore, they can be equipped with smart components to allow their delivery beyond certain biological barriers, such as skin, mucus, blood, extracellular matrix, cellular and subcellular organelles. This tutorial review highlights the importance of well-defined chemistries, with detailed ties to specific biological hurdles and opportunities, in the design of nanostructures for various biomedical delivery applications.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Nanopartículas/química , Polímeros/química , Humanos
19.
J Am Chem Soc ; 134(2): 1235-42, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22257265

RESUMO

Comparative studies of bulk samples of hydrolytically degradable poly(lactic acid) (PLA) vs core-shell block copolymer micelles having PLA cores revealed remarkable acceleration in the proteinase K enzymatic hydrolysis of the nanoparticulate forms and demonstrated that even with amidation-based shell cross-linking the core domain remained accessible. Kinetic analyses by (1)H NMR spectroscopy showed less than 20% lactic acid released from enzymatically catalyzed hydrolysis of poly(l-lactic acid) in bulk, whereas ca. 70% of the core degraded within 48 h for block copolymer micelles of poly(N-(acryloyloxy)succinimide-copolymer-N-acryloylmorpholine)-block-poly(L-lactic acid) (P(NAS-co-NAM)-b-PLLA), with only a slight reduction to ca. 50% for the shell cross-linked derivatives. Rigorous characterization measurements by NMR spectroscopy, fluorescence spectroscopy, dynamic light scattering, atomic force microscopy, and transmission electron microscopy were employed to confirm core excavation. These studies provide important fundamental understanding of the effects of nanoscopic dimensions on protein-polymer interactions and polymer degradability, which will guide the development of these degradable nanoconstructs to reach their potential for controlled release of therapeutics and biological clearance.


Assuntos
Endopeptidase K/metabolismo , Ácido Láctico/química , Nanopartículas/química , Polímeros/química , Cinetina , Espectroscopia de Ressonância Magnética , Micelas , Modelos Moleculares , Estrutura Molecular , Poliésteres
20.
J Am Chem Soc ; 134(9): 3938-41, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22360307

RESUMO

Amphiphilic block copolymer nanoparticles are conjugated with uropathogenic Escherichia coli type 1 pilus adhesin FimH(A) through amidation chemistry to enable bladder epithelial cell binding and internalization of the nanoparticles in vitro.


Assuntos
Adesinas de Escherichia coli/química , Células Epiteliais/citologia , Escherichia coli/química , Escherichia coli/citologia , Proteínas de Fímbrias/química , Nanopartículas/química , Polímeros/síntese química , Modelos Moleculares , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA