Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biotechnol ; 341: 137-145, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34601020

RESUMO

Extractive fermentation has been proven to be efficient in enhancing the secretion and production of secondary metabolites in submerged fermentation by Monascus spp., owing to increased cell membrane permeability and resolved product inhibition. In this study, we investigated the regulation effect of Triton X-100 on cell growth and secondary metabolite biosynthesis in submerged fermentation of M. purpureus DK. The results show that the maximum monascus pigments (MPs), citrinin (CIT) production, and specific growth rate are 136.86 U/mL, 4.57 mg/L, and 0.04 h-1, respectively, when 3 g/L of Triton X-100 is supplemented after fermentation for 10 d, and the extracellular MPs and CIT increased by 127.48% and 288.57%, respectively. RT-qPCR shows that the expression levels of MPs and CIT biosynthesis gene clusters are significantly upregulated, whereas those of glycolysis, tricarboxylic acid cycle, respiratory chains, and ATP synthase are downregulated. This study provides a vital strategy for extractive fermentation under extreme environmental conditions for further enhancing MP production.


Assuntos
Citrinina , Monascus , Suplementos Nutricionais , Fermentação , Monascus/metabolismo , Octoxinol , Pigmentos Biológicos/metabolismo
2.
Chemosphere ; 255: 126901, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32387904

RESUMO

Enhanced nitrate removal from the secondary effluent in municipal wastewater treatment plants (WWTPs) is essential for avoiding water eutrophication. To this end, a vertical baffled solid-phase denitrification reactor (VBSDR) was developed using a starch and polycaprolactone (PCL) blend plate (S-PCL) as a carbon source and biofilm carrier. In this study, we evaluated the denitrification performance and microbial diversity of the VBSDR. The results of the Fourier transform infrared spectroscopy (FTIR), carbon leaching experiment, and scanning electron microscopy (SEM) demonstrated that the S-PCL structure can be attached and degraded more rapidly. Furthermore, the denitrification performance under varied operational conditions, i.e., influent nitrate loading rate (NLR) and operating temperature, was also investigated. Herein, when treating low C/N ratio and low-strength wastewater, a high denitrification rate (DR) [0.33 gN/(L·d)] was achieved. The effect of temperature on DR can be described by the Arrhenius-type equation, which shows that low temperature has a negative influence on DR and nitrate removal efficiency. Furthermore, DR was simultaneously affected by the NLR and temperature. The microbial diversity and community structure were determined by Illumina high-throughput sequencing. The special carbon source led to Acidovorax (denitrifying bacteria) and Flavobacterium (hydrolysis acidifying bacteria) being the VBSDR biofilm's most predominant functional bacteria at the genus level.


Assuntos
Poliésteres/química , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Reatores Biológicos/microbiologia , Carbono/química , Comamonadaceae , Desnitrificação , Nitratos/química , Nitrogênio/química , Amido/química , Temperatura , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA