Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Crit Rev Food Sci Nutr ; 62(14): 3817-3832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33406881

RESUMO

Hydrogels, polymeric network materials, are capable of swelling and holding the bulk of water in their three-dimensional structures upon swelling. In recent years, hydrogels have witnessed increased attention in food and biomedical applications. In this paper, the available literature related to the design concepts, types, functionalities, and applications of hydrogels with special emphasis on food applications was reviewed. Hydrogels from natural polymers are preferred over synthetic hydrogels. They are predominantly used in diverse food applications for example in encapsulation, drug delivery, packaging, and more recently for the fabrication of structured foods. Natural polymeric hydrogels offer immense benefits due to their extraordinary biocompatible nature. Hydrogels based on natural/edible polymers, for example, those from polysaccharides and proteins, can serve as prospective alternatives to synthetic polymer-based hydrogels. The utilization of hydrogels has so far been limited, despite their prospects to address various issues in the food industries. More research is needed to develop biomimetic hydrogels, which can imitate the biological characteristics in addition to the physicochemical properties of natural materials for different food applications.


Assuntos
Hidrogéis , Polímeros , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Polímeros/química , Polissacarídeos/química , Estudos Prospectivos
2.
Analyst ; 144(20): 6055-6063, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31517337

RESUMO

Unlike other extracellular vesicle (EV) subtypes such as exosomes, the lack of well-defined universal markers on the surface of microvesicles (MVs) has led to difficulty in the detection of the entire MV population. To design a universal MV detection method, we reported highly sensitive electrical detection of MVs using a reduced graphene oxide (RGO)-based field-effect transistor (FET) biosensor by the introduction of a membrane biotinylation strategy in this work. Biotinylated MVs (B-MVs) were obtained by supplying the culture medium with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)-2000] (DSPE-PEG-biotin) while cultivating the cells. Excellent biotinylation efficiency of MVs (92.6%) was then realized. A streptavidin (SA) probe was subsequently modified onto the channel surface of the as-fabricated RGO-based FET device, which was capable of specifically recognizing B-MVs due to the high affinity between SA and biotin in a 1 : 4 recognition format. The results showed that the RGO-based FET biosensor could detect B-MVs in a wide range from 105 particles per mL to 109 particles per mL with a low detection limit down to 20 particles per µL, which was the lowest value compared with other previously reported results. This platform also allowed distinguishing B-MVs from other unbiotinylated EV types such as MVs and exosomes, exhibiting excellent specificity. Moreover, this FET biosensor demonstrated the capability of detecting B-MVs derived from different cell lines including cancer cells and normal cells, indicating its versatility and potential applications in the biomedical field.


Assuntos
Técnicas Biossensoriais/métodos , Biotina/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Grafite/química , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Biotinilação , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Estreptavidina/metabolismo , Transistores Eletrônicos
3.
Int J Biol Macromol ; 195: 466-474, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34914909

RESUMO

Periplaneta americana L. (PA), a type of animal medicine, has been widely used for wound healing in clinical settings. In order to further investigate the bioactive wound healing substances in PA, crude PA protein-polysaccharide complexes were further purified by cellulose DE-52 and Sephadex G100 chromatography in succession. Among these isolated fractions, two fractions eluted by 0.3 M and 0.5 M NaCl with the higher yield, respectively named PaPPc2 and PaPPc3 respectively, were chosen for the wound healing experiments. Mediated by HPGPC, amino acid and monosaccharide composition analysis, circular dichroism spectrum, glycosylation type, FT-IR, and 1H NMR analysis, the characterization of PaPPc2 and PaPPc3 was implemented. And then, the benefits of PaPPcs to promote cell proliferation, migration, and tube formation of HUVECs were determined in vitro, indicated these fractions would facilitate angiogenesis. Finally, as proof of concept, PaPPc2 and PaPPc3 were employed to accelerate the acute wounds of diabetic mice, involving in increase blood vessels and the amounts of angiogenesis-related cytokines (α-SMA, VEGF, and CD31). In short, this study provides an experimental basis to demonstrate the protein-polysaccharide complexes of Periplaneta americana L. as its wound healing bioactive substances.


Assuntos
Materiais Biocompatíveis , Proteínas de Insetos/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Periplaneta/química , Polissacarídeos/química , Cicatrização , Aminoácidos/química , Animais , Linhagem Celular , Fenômenos Químicos , Diabetes Mellitus Experimental , Humanos , Substâncias Macromoleculares/isolamento & purificação , Medicina Tradicional , Camundongos , Monossacarídeos/química , Análise Espectral
4.
Brain Behav ; 10(9): e01724, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666699

RESUMO

INTRODUCTION: Mutations within TFG gene were recently reported to cause Charcot-Marie-Tooth disease 2 (CMT2). However, only few pedigrees were documented so far. Here, we reported a Chinese CMT2 pedigree with 8 affected cases and a novel TFG mutation. METHODS: Clinical evaluation and electrophysiological study were performed in all the affected individuals. Whole-exome sequencing was conducted, followed by the Sanger sequencing and co-segregation analysis to verify the variants. RESULTS: All cases presented with a phenotype of CMT2, including slowly progressive symmetrical muscle atrophy and weakness predominantly in the distal limbs. Sensory loss in the distal limbs was present in the proband and his father. Age at onset ranged from 37 to 44 years, and was younger in male cases, compared with female cases. Nerve conduction study revealed normal motor nerve conduction velocity but decreased compound muscle action potential. Electromyography test revealed fibrillation potential and positive sharp waves. The creatine kinase activity was increased in all cases. After genetic investigations, we identified a novel TFG c.793C>G (p.Pro265Ala) mutation in the family. This mutation alters the conserved amino acid residue and is absent in 1000G, ExAC, dbSNP, EP6500, and 200 in-house controls. It co-segregated with the disease in the family. CONCLUSIONS: Our report provided additional evidence that the heterozygous TFG mutations were associated with CMT2.


Assuntos
Doença de Charcot-Marie-Tooth , Adulto , Doença de Charcot-Marie-Tooth/genética , China , Feminino , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Proteínas
5.
ACS Nano ; 14(7): 8866-8874, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32574035

RESUMO

Carbon nanotube (CNT) field-effect transistor (FET)-based biosensors have shown great potential for ultrasensitive biomarker detection, but challenges remain, which include unsatisfactory sensitivity, difficulty in stable functionalization, incompatibility with scalable fabrication, and nonuniform performance. Here, we describe ultrasensitive, label-free, and stable FET biosensors built on polymer-sorted high-purity semiconducting CNT films with wafer-scale fabrication and high uniformity. With a floating gate (FG) structure using an ultrathin Y2O3 high-κ dielectric layer, the CNT FET biosensors show amplified response and improved sensitivity compared with those sensors without Y2O3, which is attributed to the chemical gate-coupling effect dominating the sensor response. The CNT FG-FETs are modified to selectively detect specific disease biomarkers, namely, DNA sequences and microvesicles, with theoretical record detection limits as low as 60 aM and 6 particles/mL, respectively. Furthermore, the biosensors exhibit highly uniform performance over the 4 in. wafer as well as superior bias stress stability. The FG CNT FET biosensors could be extended as a universal biosensor platform for the ultrasensitive detection of multiple biological molecules and applied in highly integrated and multiplexed all CNT-FET-based sensor architectures.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Polímeros , Transistores Eletrônicos
6.
Carbohydr Polym ; 238: 116183, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32299577

RESUMO

This study was to investigate the effects of in vitro simulated saliva-gastrointestinal digestion on the physicochemical properties and bioactivities of okra polysaccharides (OPS). Results showed that the digestibilities of OPS were about 5.1%, 37.5%, and 41.3% after saliva digestion (SD), saliva-gastric digestion (SGD), and saliva-gastrointestinal digestion (SGID), respectively. The SGID significantly changed the physicochemical properties of OPS, such as total uronic acids, total flavonoids, monosaccharide composition, rheological properties, and molecular weights (Mw). Especially, Mw changes resulted in the breakdown of glycosidic bonds during SGD, and the degradation of OPS during SGID was mainly caused by disrupting aggregates. Furthermore, the bioactivities of OPS were also affected by SGID. After SGID, OPS still possessed strong antioxidant activities, binding capacities, and prebiotic activities, but the α-glucosidase inhibitory effect was obviously decreased. Overall, results can provide valuable and scientific support on the oral administration of OPS as functional foods and medicines in the future.


Assuntos
Abelmoschus/química , Digestão , Extratos Vegetais , Polissacarídeos , Prebióticos , Saliva/metabolismo , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Estômago/enzimologia
7.
Zhongguo Gu Shang ; 33(12): 1175-8, 2020 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-33369328

RESUMO

Titanium alloy has good biological properties and is commonly used in orthopedics, but its bone integrity and antibacterial properties are poor, so surface modification is needed to make up for its shortcomings. Chitosan has good biocompatibility and film forming ability, and can be used as a carrier to introduce the target drug to the surface of titanium alloy, which can effectively improve the biological properties of titanium alloy materials and increase its application range. In this paper, the related research of chitosan surface modified titanium alloy materials in recent years is summarized. The modification methods of chitosan coating, the improvement of osteogenesisand antibacterial properties of titanium alloy materials are discussed in order to provide guidance for the clinical application of coating modification of titanium alloy materials.


Assuntos
Quitosana , Ortopedia , Ligas , Antibacterianos/farmacologia , Propriedades de Superfície , Titânio
8.
Theranostics ; 8(19): 5482-5500, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555559

RESUMO

Background: Treatment of large bone defects represents a major clinical problem worldwide. Suitable bone substitute materials are commonly required to achieve successful bone regeneration, and much effort has been spent to optimize their chemical compositions, 3D architecture and mechanical properties. However, material-immune system interactions are increasingly being recognized as a crucial factor influencing regeneration. Here, we envisioned an accurate and proactive immunomodulation strategy via delivery of IL-4 (key regulator of macrophage polarization) to promote bone substitute material-mediated regeneration. Methods: Four different IL-4 doses (0 ng, 10 ng, 50 ng and 100 ng) were delivered into rat large cranial bone defects at day 3 post-operation of decellularized bone matrix (DBM) material implantation, and the osteogenesis, angiogenesis and macrophage polarization were meticulously evaluated. Results: Micro-CT analysis showed that immunomodulation with 10 ng IL-4 significantly outperformed the other groups in terms of new bone formation (1.23-5.05 fold) and vascularization (1.29-6.08 fold), achieving successful defect bridging and good vascularization at 12 weeks. Histological analysis at 7 and 14 days showed that the 10 ng group generated the most preferable M1/M2 macrophage polarization profile, resulting in a pro-healing microenvironment with more IL-10 and less TNF-α secretion, a reduced apoptosis level in tissues around the materials, and enhanced mesenchymal stem cell migration and osteogenic differentiation. Moreover, in vitro studies revealed that M1 macrophages facilitated mesenchymal stem cell migration, while M2 macrophages significantly increased cell survival, proliferation and osteogenic differentiation, explaining the in vivo findings. Conclusions: Accurate immunomodulation via IL4 delivery significantly enhanced DBM-mediated osteogenesis and angiogenesis via the coordinated involvement of M1 and M2 macrophages, revealing the promise of this accurate and proactive immunomodulatory strategy for developing new bone substitute materials.


Assuntos
Doenças Ósseas/terapia , Substitutos Ósseos/administração & dosagem , Fatores Imunológicos/administração & dosagem , Interleucina-4/administração & dosagem , Osteogênese , Animais , Substitutos Ósseos/metabolismo , Movimento Celular , Citocinas/análise , Modelos Animais de Doenças , Imuno-Histoquímica , Fatores Imunológicos/metabolismo , Interleucina-4/metabolismo , Macrófagos/imunologia , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica , Ratos , Regeneração , Crânio/patologia , Resultado do Tratamento , Microtomografia por Raio-X
9.
Anal Biochem ; 375(1): 18-26, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18194660

RESUMO

Regulated phosphorylation by protein tyrosine kinases (PTKs), such as c-Abl, is critical to cellular homeostasis. In turn, once deregulated as in the chronic myeloid leukemia (CML) fusion protein Bcr-Abl, PTKs can promote cancer onset and progression. The dramatic success of the Bcr-Abl inhibitor imatinib as therapy for CML has inspired interest in other PTKs as targets for cancer drug discovery. Here we report a novel PTK activity and inhibition screening method using hydrogel-immobilized peptide substrates. Using acrylate crosslinkers, we tether peptides via terminal cysteines to thiol-presenting hydrogels in 96-well plates. These surfaces display low background and high reproducibility, allowing semiquantitative detection of peptide phosphorylation by recombinant c-Abl or by Bcr-Abl activity in cell extracts using traditional anti-phosphotyrosine immunodetection and chemifluorescence. The capabilities of this assay are demonstrated by performing model screens for inhibition with several commercially available PTK inhibitors and a collection of pyridopyrimidine Src/Abl dual inhibitors. This assay provides a practical method to measure the activity of a single kinase present in a whole cell lysate with high sensitivity and specificity as a valuable means for efficient small molecule screening.


Assuntos
Bioensaio/métodos , Proteínas de Fusão bcr-abl/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Extratos Celulares , Avaliação Pré-Clínica de Medicamentos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Humanos , Células K562 , Peptídeos/química , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Fatores de Tempo
10.
Biomacromolecules ; 6(5): 2765-75, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16153117

RESUMO

We describe the development of an array-based assay for the molecular level detection of tyrosine kinase activity directly from cellular extracts. Glutathione S-transferase-Crkl (GST-Crkl) fusion proteins are covalently immobilized into polyacrylamide gel pads via copolymerization of acrylic monomer and acrylic-functionalized GST-Crkl protein constructs on a polyacrylamide surface. The resulting hydrogels resist nonspecific protein adsorption, permitting quantitative and reproducible determination of Abl tyrosine kinase activity and inhibition, even in the presence of a complex cell lysate mixture. Half-maximal inhibition (IC50) values for imatinib mesylate inhibition of GST-Crkl (SH3) phosphorylation by v-Abl in a purified system and Bcr-Abl within a K562 cell lysate were determined to be 1.5 and 20 microM, respectively. Additionally, the protein-acrylamide copolymer arrays detected CML cell levels as low as 15% in a background of Bcr-Abl- leukemic cells and provided the framework for the parallel evaluation of six tyrosine kinase inhibitors. Such a system may have direct application to the detection and treatment of cancers resulting from upregulated tyrosine kinase activity, such as chronic myeloid leukemia (CML). These findings also establish a basis for screening tyrosine kinase inhibitors and provide a framework on which protein-protein interactions in other complex systems can be studied.


Assuntos
Acrilamidas/química , Resinas Acrílicas/química , Adsorção , Benzamidas , Materiais Biocompatíveis/química , Biopolímeros/química , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/metabolismo , Células HL-60 , Humanos , Hidrogéis/química , Mesilato de Imatinib , Concentração Inibidora 50 , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Modelos Químicos , Fosforilação , Piperazinas/farmacologia , Polilisina/química , Polímeros/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirimidinas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo
11.
J Vasc Interv Radiol ; 16(10): 1385-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16221911

RESUMO

Technical success rates for percutaneous restoration of thrombosed arteriovenous grafts are high. However, in thrombosed grafts without restorable original outflow veins, percutaneous salvage is usually not possible. In this situation, patients are referred for bypass grafting or recreation of their vascular access sites. This report describes a patient in whom the original outflow vein at the venous anastomosis was completely obliterated and in whom vascular access was successfully salvaged by percutaneously reanastomosing the venous stump of the thrombosed graft with an adjacent patent vein. This procedure is technically feasible for the salvage of a thrombosed graft.


Assuntos
Anastomose Cirúrgica/métodos , Veias Braquiocefálicas/cirurgia , Materiais Revestidos Biocompatíveis/uso terapêutico , Oclusão de Enxerto Vascular/terapia , Stents , Idoso , Implante de Prótese Vascular , Veias Braquiocefálicas/diagnóstico por imagem , Veias Braquiocefálicas/patologia , Feminino , Oclusão de Enxerto Vascular/diagnóstico por imagem , Humanos , Diálise Renal , Reoperação , Ultrassonografia de Intervenção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA