Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 32(1): 8, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33471211

RESUMO

Intervertebral disc (IVD) degeneration is one of the most important causes of lower back pain. Tissue engineering provides a new method for the experimental treatment of degenerative disc diseases. This study aims to develop a natural, acellular, 3D interconnected porous scaffold derived from the extracellular matrix (ECM) of nucleus pulposus. The nucleus pulposus (NP) was decellularized by sequential detergent-nuclease methods, including physical crushing, freeze-drying and cross-linking. These 3D porous scaffolds were fabricated with a high porosity of (81.28 ± 4.10)%, an ideal pore size with appropriate mechanical properties. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were seeded and cultured on the scaffolds. And the mechanical tests showed the compressive elastic modulus of the scaffolds cultured for 4 weeks reached 0.12 MPa, which was better than that of the scaffolds cultured for 2 weeks (0.07 MPa) and that of the control group (0.04 MPa). Scanning electron microscopy (SEM), histological assays, molecular biology assays revealed that the scaffolds could provide an appropriate microstructure and environment for the adhesion, proliferation, migration and secretion of seeded cells in vitro. As assays like histology, immunohistochemistry and the real-time qRT-PCR showed, NP-like tissues were preliminarily formed. In conclusion, the 3D porous scaffold derived from NP ECM is a potential biomaterial for the regeneration of NP tissues. A natural, acellular, 3D interconnected porous scaffold derived from the extracellular matrix (ECM) of nucleus pulposus was developed by sequential detergent-nuclease and freeze-drying method, which can reduce the damage of protein activity to the minimum. It is very similar to the composition and internal environment of the natural nucleus pulposus, because it derived from the natural nucleus pulposus. Scanning electron microscopy (SEM), histological assays, molecular biology assays revealed that the scaffolds could provide an appropriate microstructure and environment for the adhesion, proliferation, migration, and secretion of seeded cells in vitro.


Assuntos
Biomimética , Núcleo Pulposo/metabolismo , Animais , Materiais Biocompatíveis/metabolismo , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Matriz Extracelular , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Porosidade , Pressão , Coelhos , Estresse Mecânico , Sais de Tetrazólio/química , Tiazóis/química , Engenharia Tecidual/métodos , Alicerces Teciduais
2.
Adv Sci (Weinh) ; 9(17): e2104382, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388640

RESUMO

A soft gripper inspired by the glowing sucker octopus (Stauroteuthis syrtensis)' highly evolved grasping capability enabled by the umbrella-shaped dorsal and ventral membrane between each arm is presented here, comprising of a 3D-printed linkage mechanism used to actuate a modular mold silicone-casting soft suction disc to deform. The soft gripper grasp can lift objects using the suction generated by the pump in the soft disc. Moreover, the protruded funnel-shaped end of the deformed suctorial mouth can adapt to smooth and rough surfaces. Furthermore, when the gripper contacts the submerged target objects in a turbid environment, local suctorial mouth arrays on the suction disc are locked, causing the variable flow inside them, which can be detected as a tactile perception signal to the target objects instead of visual perception. Aided by the 3D-printed linkage mechanism, the soft gripper can grasp objects of different shapes and dimensions, including flat objects, objects beyond the grasping range, irregular objects, scattered objects, and a moving turtle. The results report the soft gripper's versatility and demonstrate the vast application potentials of self-adaptive grasping and sensing in various environments, including but are not limited to underwater, which is always a key challenge of grasping technology.


Assuntos
Octopodiformes , Robótica , Animais , Força da Mão , Robótica/métodos , Sucção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA