Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 17(20): e2007994, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749108

RESUMO

Rhenium is one of the most valuable elements found in nature, and its capture and recycle are highly desirable for resource recovery. However, the effective and efficient collection of this material from industrial waste remains quite challenging. Herein, a tetraphenylmethane-based cationic polymeric network (CPN-tpm) nanotrap is designed, synthesized, and evaluated for ReO4- recovery. 3D building units are used to construct imidazolium salt-based polymers with positive charges, which yields a record maximum uptake capacity of 1133 mg g-1 for ReO4- collection as well as fast kinetics ReO4- uptake. The sorption equilibrium is reached within 20 min and a kd value of 8.5 × 105 mL g-1 is obtained. The sorption capacity of CPN-tpm remains stable over a wide range of pH values and the removal efficiency exceeds 60% for pH levels below 2. Moreover, CPN-tpm exhibits good recyclability for at least five cycles of the sorption-desorption process. This work provides a new route for constructing a kind of new high-performance polymeric material for rhenium recovery and rhenium-contained industrial wastewater treatment.


Assuntos
Rênio , Ânions , Polímeros , Águas Residuárias
2.
Materials (Basel) ; 15(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431463

RESUMO

High temperature and strain will occur in the cutting area during dry milling of contour bevel gears, which causes plastic deformation of the workpiece, resulting in changes in the physical properties of the machined surface's metamorphic layer, reducing the quality of the workpiece's machined surface. Therefore, it is necessary to investigate the properties of the metamorphic layer and the work hardening behavior of the machined surfaces of contour bevel gears. The paper first establishes a single-tooth finite element simulation model for a contour bevel gear and extracts the temperature field, strain field and strain rate at different depths from the machined surface. Then, based on the simulation results, the experiment of milling contour bevel gears is carried out, the microscopic properties of the machined metamorphic layer are studied using XRD diffractometer and ultra-deep field microscopy, and the work hardening behavior of the machined metamorphic layer under different cutting parameters is studied. Finally, the influence of the cutting parameters on the thickness of the metamorphic layer of the machined surface is investigated by scanning electron microscopy. The research results can not only improve the surface quality and machinability of the workpiece, but are also significant for increasing the fatigue strength of the workpiece.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA