Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(11): 2455-2465, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36810638

RESUMO

Nanomedicines have been widely used for cancer therapy, while controlling their activity for effective and safe treatment remains a big challenge. Herein, we report the development of a second near-infrared (NIR-II) photoactivatable enzyme-loaded nanomedicine for enhanced cancer therapy. Such a hybrid nanomedicine contains a thermoresponsive liposome shell loaded with copper sulfide nanoparticles (CuS NPs) and glucose oxidase (GOx). The CuS nanoparticles mediate the generation of local heat under 1064 nm laser irradiation, which not only can be used for NIR-II photothermal therapy (PTT), but also leads to the destruction of the thermal-responsive liposome shell to achieve the on-demand release of CuS nanoparticles and GOx. In a tumor microenvironment, GOx oxidizes glucose to produce hydrogen peroxide (H2O2) that acts as a medium to promote the efficacy of chemodynamic therapy (CDT) by CuS nanoparticles. This hybrid nanomedicine enables the synergetic action of NIR-II PTT and CDT to obviously improve efficacy without remarkable side effects via NIR-II photoactivatable release of therapeutic agents. Such a hybrid nanomedicine-mediated treatment can achieve complete ablation of tumors in mouse models. This study provides a promising nanomedicine with photoactivatable activity for effective and safe cancer therapy.


Assuntos
Neoplasias , Terapia Fototérmica , Animais , Camundongos , Nanomedicina , Lipossomos/uso terapêutico , Peróxido de Hidrogênio/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
Mater Horiz ; 10(9): 3507-3522, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255101

RESUMO

Cartilage defects are usually caused by acute trauma and chronic degeneration. However, it is still a great challenge to improve the repair of articular cartilage defects due to the limited self-regeneration capacity of such defects. Herein, a novel ROS-responsive in situ nanocomposite hydrogel loaded with kartogenin (KGN) and bone marrow-derived stem cells (BMSCs) was designed and constructed via the enzymatic reaction of fibrinogen and thrombin. Meanwhile, a ROS-responsive thioketal (TK)-based liposome was synthesized to load the chondrogenesis-inducing factor KGN, the bioenzyme thrombin and an ultrasound-sensitive agent PpIX. Under ultrasound stimulation, the TK-based liposome was destroyed, followed by in situ gelation of fibrinogen and thrombin. Moreover, sustained release of KGN was realized by regulating the ultrasound conditions. Importantly, ROS generation and KGN release within the microenvironment of the in situ fibrin hydrogel significantly promoted chondrogenic differentiation of BMSCs via the Smad5/mTOR signalling pathway and effectively improved cartilage regeneration in a rat articular cartilage defect model. Overall, the novel in situ nanocomposite hydrogel with ROS-controlled drug release has great potential for efficient cartilage repair.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Liberação Controlada de Fármacos , Lipossomos/metabolismo , Lipossomos/farmacologia , Nanogéis , Trombina/metabolismo , Trombina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Hidrogéis
3.
Theranostics ; 12(11): 5103-5124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836802

RESUMO

Osteoarthritis (OA) is a common joint disease with a high disability rate. In addition, OA not only causes great physiological and psychological harm to patients, but also puts great pressure on the social healthcare system. Pathologically, the disintegration of cartilage and the lesions of subchondral bone are related to OA. Currently, tissue engineering, which is expected to overcome the defects of existing treatment methods, had a lot of research in the field of cartilage/osteochondral repair. Silk fibroin (SF), as a natural macromolecular material with good biocompatibility, unique mechanical properties, excellent processability and degradability, holds great potential in the field of tissue engineering. Nowadays, SF had been prepared into various materials to adapt to the demands of cartilage/osteochondral repair. SF-based biomaterials can also be functionally modified to enhance repair performance further. In this review, the preparation methods, types, structures, mechanical properties, and functional modifications of SF-based biomaterials used for cartilage/osteochondral repair are summarized and discussed. We hope that this review will provide a reference for the design and development of SF-based biomaterials in cartilage/osteochondral repair field.


Assuntos
Fibroínas , Materiais Biocompatíveis , Cartilagem , Fibroínas/química , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA