Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(35): 10516-10520, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28590548

RESUMO

Coating individual bacterial cells with conjugated polymers to endow them with more functionalities is highly desirable. Here, we developed an in situ polymerization method to coat polypyrrole on the surface of individual Shewanella oneidensis MR-1, Escherichia coli, Ochrobacterium anthropic or Streptococcus thermophilus. All of these as-coated cells from different bacterial species displayed enhanced conductivities without affecting viability, suggesting the generality of our coating method. Because of their excellent conductivity, we employed polypyrrole-coated Shewanella oneidensis MR-1 as an anode in microbial fuel cells (MFCs) and found that not only direct contact-based extracellular electron transfer is dramatically enhanced, but also the viability of bacterial cells in MFCs is improved. Our results indicate that coating individual bacteria with conjugated polymers could be a promising strategy to enhance their performance or enrich them with more functionalities.


Assuntos
Escherichia coli/química , Ochrobactrum/química , Polímeros/química , Pirróis/química , Shewanella/química , Streptococcus thermophilus/química , Fontes de Energia Bioelétrica , Transporte de Elétrons , Escherichia coli/citologia , Ochrobactrum/citologia , Polimerização , Shewanella/citologia , Streptococcus thermophilus/citologia , Propriedades de Superfície
2.
Environ Sci Technol ; 50(17): 9543-50, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27479138

RESUMO

We report a facile method for the antimicrobial modification of a thin-film composite polyamide reverse osmosis (RO) membrane. The membrane surface was first coated with polydopamine (PDA), whose reducing catechol groups subsequently immobilized silver ions in situ to form uniformly dispersed silver nanoparticles (AgNPs) inside the coating layer. Agglomeration of AgNPs was not observed despite a high silver loading of 13.3 ± 0.3 µg/cm(2) (corresponding to a surface coverage of 18.5% by the nanoparticles). Both diffusion inhibition zone tests and colony formation unit tests showed clear antimicrobial effects of the silver loaded membranes on model bacteria Bacillus subtilis and Escherichia coli. Furthermore, the silver immobilized membrane had significantly enhanced salt rejection compared to the control PDA coated membrane, which is attributed to the preferential formation of AgNPs at defect sides within the PDA layer. This self-healing mechanism can be used to prepare antimicrobial RO membranes with improved salt rejection without scarifying the membrane permeability, which provides a new dimension for membrane surface modification.


Assuntos
Nylons , Prata/farmacologia , Anti-Infecciosos/farmacologia , Filtração , Membranas Artificiais
3.
J Hazard Mater ; 382: 120976, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31454608

RESUMO

Biofouling is the Achilles Heel of membrane processes. The accumulation of organic foulants and growth of microorganisms on the membrane surface reduce the permeability, shorten the membrane life, and increase the energy consumption. Advancements in novel carbon-based materials (CBMs) present significant opportunities in mitigating biofouling of membrane processes. This article provides a comprehensive review of the recent progress in the application of CBMs in antibiofouling membrane. It starts with a detailed summary of the different antibiofouling mechanisms of CBM-containing membrane systems. Next, developments in membrane modification using CBMs, especially carbon nanotubes and graphene family materials, are critically reviewed. Further, the antibiofouling potential of next-generation carbon-based membranes is surveyed. Finally, the current problems and future opportunities of applying CBMs for antibiofouling membranes are discussed.


Assuntos
Incrustação Biológica/prevenção & controle , Carbono , Membranas Artificiais
4.
Environ Int ; 132: 105116, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31479959

RESUMO

Biofilms have been extensively studied in aquatic and clinical environments. However, the complexity of edaphic microenvironment hinders the advances toward understanding the environmental functionalities and ecological roles of soil biofilms. In this work, artificial soil was employed to investigate the soil biofilm formation and corresponding impacts on community structure and microbial activities. Our results showed that extracellular polymeric substances (EPS) production was significantly enhanced and micro-meter sized cell aggregates formed with high glucose amendment. Biofilm development exhibited significant effects on the soil microbial processes. 16S rRNA gene sequencing demonstrated the soils with biofilms and free-living cells shared similar microbial communities. But the Shannon diversity and evenness indices of communities with soil biofilms were significantly enhanced by 18.2% and 17.1%. The soil with biofilms also revealed a rapid response to nutrient provision and robust microbial activity, which consumed 65.4% more oxygen in the topsoil (0-1.5 mm). Kinetic respiration analysis showed that the enhanced metabolic activity was attributed to 23-times more active microbes in soil biofilms. In summary, this study revealed that soil biofilms can sustain a diverse and robust community to drive soil biogeochemical processes.


Assuntos
Biofilmes , Microbiota , Microbiologia do Solo , Biofilmes/efeitos dos fármacos , Biopolímeros/metabolismo , Glucose/farmacologia , Microbiota/genética , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Solo
5.
Sci Rep ; 7(1): 2334, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539615

RESUMO

We report a facile method for preparing silver-loaded membranes for point-of-use disinfection and disaster relief applications. A bio-inspired material, polydopamine, was coated onto a highly porous nanofibrous polyacrylonitrile substrate. We then take advantage of the redox properties of polydopamine to form silver nanoparticles in situ. These nanoparticles were uniformly distributed on the surface of nanofibers with no apparent agglomeration at a silver loading up to 4.36 wt.% (cPAN-Ag1.5). The silver-incorporated membrane cPAN-Ag1.5 achieved a high pure water flux of 130 Lm-2 h-1 at 10-cm water head, demonstrating the feasibility of energy-efficient gravity-driven filtration and eliminating the need for electrical power. The strong anti-bacterial activity and high physical rejection of the membrane led to an excellent disinfection power, with no viable bacterial cells detected in its permeate water. The membrane exhibited >7 log reduction for E. coli and >6 log reduction for B. subtilis. The strategy reported here provides an efficient and green route to synthesize point-of-use membranes. Combining their excellent permeability and disinfection effectiveness, these membranes offer an ideal solution to water supply in disaster-affected areas.


Assuntos
Nanopartículas Metálicas/química , Nanofibras/química , Purificação da Água , Água/química , Desinfecção/métodos , Escherichia coli/efeitos dos fármacos , Humanos , Indóis/química , Polímeros/química , Prata/química , Microbiologia da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA