Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458701

RESUMO

Keratin liposomes have emerged as a useful topical drug delivery system given theirenhanced ability to penetrate the skin, making them ideal as topical drug vehicles. However, the mechanisms of the drug penetration enhancement of keratin liposomes have not been clearly elucidated. Therefore, licochalcone A(LA)-loaded skin keratin liposomes (LALs) were prepared to investigate their mechanisms of penetration enhancement on the skin and inB16F10 cells. Skin deposition studies, differential scanning calorimetry (DSC), attenuated total reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and skin distribution and intracellular distribution studies were carried out to demonstrate the drug enhancement mechanisms of LALs. We found that the optimal application of LALs enhanced drug permeation via alterations in the components, structure, and thermodynamic properties of the stratum corneum (SC), that is, by enhancing the lipid fluidization, altering the skin keratin, and changing the thermodynamic properties of the SC. Moreover, hair follicles were the main penetration pathways for the LA delivery, which occurred in a time-dependent manner. In the B16F10 cells, the skin keratin liposomes effectively delivered LA into the cytoplasm without cytotoxicity. Thus, LAL nanoparticles are promising topical drug delivery systems for pharmaceutical and cosmetic applications.


Assuntos
Lipossomos , Absorção Cutânea , Administração Cutânea , Chalconas , Queratinas/metabolismo , Lipossomos/química , Pele
2.
Adv Healthc Mater ; 13(15): e2304293, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38444200

RESUMO

Biodegradable stents are considered a promising strategy for the endovascular treatment of cerebrovascular diseases. The visualization of biodegradable stents is of significance during the implantation and long-term follow-up. Endowing biodegradable stents with X-ray radiopacity can overcome the weakness of intrinsic radioparency of polymers. Hence, this work focuses on the development of an entirely X-ray visible biodegradable stent (PCL-KIO3) composed of polycaprolactone (PCL) and potassium iodate via physical blending and 3D printing. The in vitro results show that the introduction of potassium iodate makes the 3D-printed PCL stents visualizable under X-ray. So far, there is inadequate study about polymeric stent visualization in vivo. Therefore, PCL-KIO3 stents are implanted into the rabbit carotid artery to evaluate the biosafety and visibility performance. During stent deployment, the visualization of the PCL-KIO3 stent effectively helps to understand the position and dilation status of stents. At 6-month follow-up, the PCL-KIO3 stent could still be observed under X-ray and maintains excellent vessel patency. To sum up, this study demonstrates that PCL-KIO3 stent may provide a robust strategy for biodegradable stent visualization.


Assuntos
Implantes Absorvíveis , Artérias Carótidas , Poliésteres , Impressão Tridimensional , Stents , Animais , Coelhos , Poliésteres/química , Artérias Carótidas/cirurgia , Raios X
3.
ACS Appl Mater Interfaces ; 11(28): 25613-25623, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31273992

RESUMO

Currently, flexible wearable hydrogel-based sensors have attracted considerable attention due to their promising applications in a variety of fields. However, concurrently integrating toughness, adhesiveness, self-healing ability, and conductivity into the hydrogel is still a great challenge. Here, casein sodium salt from bovine milk (sodium casein, SC) and polydopamine (PDA, inspired by mussels) were successfully introduced into the polyacrylamide (PAAm) hydrogel system to fabricate a tough and adhesive SC-PDA hydrogel. The hydrogel exhibits splendidly reversible adhesive behavioral bonding toward various materials and even human skin. Moreover, based on the dynamic cross-linking of SC and PDA in the system, the hydrogel has superstretching ability, excellent fatigue resistance, and rapid self-healing ability. In addition, the existence of sodium ions also endowed the SC-PDA hydrogel with sensitive deformation-dependent conductivity to act as a flexible strain and pressure sensor for directly monitoring large-scale human motions (e.g., joint bending) and tiny physiological signals (e.g., speaking and breathing). Therefore, the strategy would broaden the path of a new generation of hydrogel-based sensors for wide applications.


Assuntos
Adesivos , Condutividade Elétrica , Hidrogéis , Movimento , Dispositivos Eletrônicos Vestíveis , Resinas Acrílicas , Humanos , Indóis , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA