Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(5): 2728-2739, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38563621

RESUMO

Myopia is a global public health issue. Rigid contact lenses (RCLs) are an effective way to correct or control myopia. However, bioadhesion issues remain one of the significant obstacles limiting its clinical application. Although enhancing hydrophilicity through various surface treatments can mitigate this problem, the duration of effectiveness is short-lived and the processing involved is complex and costly. Herein, an antiadhesive RCLs material was designed via 8-armed methacrylate-POSS (8MA-POSS), and poly(ethylene glycol) methacrylate (PEGMA) copolymerization with 3-[tris(trimethylsiloxy)silyl] propyl methacrylate (TRIS). The POSS and PEG segments incorporated P(TRIS-co-PEGMA-co-8MA-POSS) (PTPM) material was obtained and their optical transparency, refractive index, resolution, hardness, surface charge, thermal features, and wettability were tested and optimized. The antibioadhesion activities, including protein, lipid, and bacteria, were evaluated as well. In vitro and in vivo results indicated that the optimized antibioadhesive PTPM materials present good biocompatibility and biosafety. Thus, such POSS and PEG segments containing material were a potential antibioadhesive RCL material option.


Assuntos
Lentes de Contato , Metacrilatos , Compostos de Organossilício , Polietilenoglicóis , Polietilenoglicóis/química , Metacrilatos/química , Animais , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Camundongos , Materiais Biocompatíveis/química , Humanos , Miopia/tratamento farmacológico
2.
Yao Xue Xue Bao ; 50(1): 15-20, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25924469

RESUMO

Molecular imprinting technique (MIT) involves the synthesis of polymer in the presence of a template to produce complementary binding sites in terms of its size, shape and functional group orientation. Such kind of polymer possesses specific recognition ability towards its template molecule. Despite the rapid development of MIT over the years, the majority of the template molecules that have been studied are small molecules, while molecular imprinting of proteins remains a significant yet challenging task due to their large size, structural flexibility and complex conformation. This review, we summarized the research findings over the past years, and discussed the nano-reinforcing materials used to prepare molecular imprinting of proteins and the perspective of these nano-reinforcing materials.


Assuntos
Impressão Molecular , Nanoestruturas/química , Proteínas/química , Sítios de Ligação , Conformação Molecular , Polímeros/química
3.
Anal Methods ; 16(19): 3088-3098, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38690679

RESUMO

Herein, a novel fluorescent/colorimetric/photothermal biosensor is proposed for aflatoxin B1 (AFB1) detection in food based on Prussian blue nanoparticles (PBNPs) (∼50 nm), gold nanoclusters (AuNCs), and an aptamer (Apt) within three hours. Briefly, a multifunctional compound, namely PBNPs-PEI@AuNCs, was synthesized from PBNPs as the loading carrier, polyethyleneimine (PEI) as the cross-linking agent, and AuNCs directly combined on the surface of PBNPs. The AFB1 Apt was then modified on the PBNPs-PEI@AuNCs to form a PBNPs-PEI@AuNCs-Apt probe, whereby when AFB1 is present, AFB1 is specifically captured by the probe. Meanwhile, the MNPs@antibody was also introduced to capture AFB1, thereby forming a "sandwich" structure compound. After magnetic separation, high temperature was applied to this "sandwich" structure compound to induce the denaturation of the Apt. Then the fluorescent/colorimetric/photothermal signals were collected from the PBNPs-PEI@AuNCs@Apt to give information on its related condition. The detection limits of the biosensor were 0.64 × 10-14, 0.96 × 10-14, and 0.55 × 10-12 g mL-1 for the three signals, which were outputted independently and could be verified with each other to ensure the accuracy of the results. Moreover, the colorimetric and photothermal strategies with this probe do not require large-scale instruments, providing a promising choice for achieving the rapid field detection of AFB1.


Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Ferrocianetos , Ouro , Nanopartículas Metálicas , Aflatoxina B1/análise , Aflatoxina B1/química , Ouro/química , Técnicas Biossensoriais/métodos , Ferrocianetos/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Colorimetria/métodos , Contaminação de Alimentos/análise , Polietilenoimina/química
4.
J Control Release ; 366: 494-504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185335

RESUMO

Posterior capsular opacification (PCO) is the most common complication that occurs after intraocular lens (IOL) implantation in cataract therapy. In recent years, IOLs have been developed as drug delivery platforms, but concerns over the safety of uncontrolled proliferative drug release have arisen. Therefore, a controlled drug release strategy is needed for safer PCO prevention. In this study, a new monomer contained coumarin group was introduced in material preparation, and poly(ethylene glycol phenyl ether methacrylate-co-2-(2-ethoxyethoxy) ethyl acrylate-co-7-(2-methacryloyloxyethoxy)-4-methylcoumarin) (PEEC) acrylic IOL materials were synthesized. The antiproliferative drug 5-fluorouracil (5-FU) could be chemically grafted to the PEEC IOL materials easily via a light induced [2 + 2] cycloaddition reaction with the coumarin group, getting drug-loaded IOL (PEEC@5-FU IOL). The PEEC@5-FU IOL exhibited excellent optical and mechanical properties and biocompatibility. More importantly, the loaded 5-FU could be easily controlled from release by light irradiation via photo-dissociation of the cyclobutane ring that was obtained by the [2 + 2] cycloaddition reaction of 5-FU and coumarin. The in vitro and in vivo experiments demonstrated that such photo-controllable drug release IOL could effectively prevent PCO after implantation in a safe way.


Assuntos
Lentes Intraoculares , Metacrilatos , Polietilenoglicóis , Liberação Controlada de Fármacos , Fluoruracila , Cumarínicos
5.
Biomater Sci ; 11(6): 2151-2157, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36729407

RESUMO

A novel donor (D)-acceptor (A) structured conjugated polymer (PDPP-TP), which contains two alternating D-A pairs, namely thiophene (T)-diketopyrrolopyrrole (DPP) and thiophenen (T)-thieno[3,4-b]pyrazine (TP) along the main chain of the polymer, was synthesized by direct arylation polycondensation (DArP) for a highly efficient photothermal antibacterial treatment. The hydrophilic PDPP-TP-based nanoparticles (PTNPs) with a hydration diameter of about 120 nm were obtained by self-assembly using DSPE-mPEG2000 as the polymer matrix. PTNPs show strong near-infrared (NIR) absorbance with a λmax at 910 nm (ε = 2.25 × 104 L mol-1 cm-1) and NIR light-triggered photoactivity with a high photothermal conversion efficiency (PTCE) of 52.8% under 880 nm laser irradiation. Keeping the merits of excellent biocompatibility and photostability, PTNPs exhibited remarkable bacterial inhibition efficiency of almost 100% against Gram-negative E. coli and Gram-positive S. aureus with the help of an 880 nm laser (0.7 W cm-2, 6 min), demonstrating its great potential as photothermal materials with a broad spectrum of activity for the effective treatment of microbial infections.


Assuntos
Anti-Infecciosos , Nanopartículas , Terapia Fototérmica , Fototerapia , Polímeros/farmacologia , Escherichia coli , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA