RESUMO
Nature provides abundant inspiration and elegant paradigms for the development of smart materials that can actuate, morph, and move on demand. One remarkable capacity of living organisms is to adapt their shapes or positions in response to stimuli. Programmed deformations or movements in plant organs are mainly driven by water absorption/dehydration of cells, while versatile motions of mollusks are based on contraction/extension of muscles. Understanding the general principles of these morphing and motion behaviors can give rise to disruptive technologies for soft robotics, flexible electronics, biomedical devices, etc. As one kind of intelligent material, hydrogels with high similarity to soft biotissues and diverse responses to external stimuli are an ideal candidate to construct soft actuators and robots.The objective of this Account is to give an overview of the fundamental principles for controllable deformations and motions of hydrogels, with a focus on the structure designs and responsive functions of the corresponding soft actuators and robots. This field has been rapidly developed in recent years with a growing understanding of working principles in natural organisms and a substantial revolution of manufacturing technologies to devise bioinspired hydrogel systems with desired structures. Diverse morphing hydrogels and soft actuators/robots have been developed on the basis of several pioneering works, ranging from bending and folding deformations of bilayer hydrogels to self-shaping of non-Euclidean hydrogel surfaces, and from thermoactuated bilayer gel "hands" to electrodriven polyelectrolyte gel "worms". These morphing hydrogels have demonstrated active functions and versatile applications in biomedical and engineering fields.In this Account, we discuss recent progress in morphing hydrogels and highlight the design principles and relevant applications. First, we introduce the fundamentals of basic deformation modes, together with generic structure features, actuation strategies, and morphing mechanisms. The advantages of in-plane gradient structures are highlighted for programmable deformations by harnessing the out-of-plane buckling with bistability nature to obtain sophisticated three-dimensional configurations. Next, we give an overview of soft actuators and robots based on morphing hydrogels and focus on the working principles of the active systems with different structure designs. We discuss the advancements of hydrogel-based soft robots capable of swift locomotion with different gaits and emphasize the significances of structure control and dynamic actuation. Then we summarize versatile applications of hydrogel-based actuators and robots in biomedicines, cargo delivery, soft electronics, information encryption, and so forth. Some hydrogel robots with a built-in feedback loop and self-sensing system exhibit collaborative functions and advanced intelligence that are informative for the design of next-generation hydrogel machines. Finally, concluding remarks are given to discuss future opportunities and remaining challenges in this field. For example, miniature hydrogel-based actuators/robots with therapeutic or diagnostic functions are highly desired for biomedical applications. The morphing mechanisms summarized in this Account should be applicable to other responsive materials. We hope that this Account will inspire more scientists to be involved in this emerging area and make contributions to reveal novel working principles, design multifunctional soft machines, and explore applications in diverse fields.
Assuntos
Robótica , Materiais Inteligentes , Hidrogéis/química , Movimento (Física) , Robótica/métodos , ÁguaRESUMO
Recent years have witnessed the rapid development of sustainable materials. Along this line, developing biodegradable or recyclable soft electronics is challenging yet important due to their versatile applications in biomedical devices, soft robots, and wearables. Although some degradable bulk hydrogels are directly used as the soft electronics, the sensing performances are usually limited due to the absence of distributed conducting circuits. Here, sustainable hydrogel-based soft electronics (HSE) are reported that integrate sensing elements and patterned liquid metal (LM) in the gelatin-alginate hybrid hydrogel. The biopolymer hydrogel is transparent, robust, resilient, and recyclable. The HSE is multifunctional; it can sense strain, temperature, heart rate (electrocardiogram), and pH. The strain sensing is sufficiently sensitive to detect a human pulse. In addition, the device serves as a model system for iontophoretic drug delivery by using patterned LM as the soft conductor and electrode. Noncontact detection of nearby objects is also achieved based on electrostatic-field-induced voltage. The LM and biopolymer hydrogel are healable, recyclable, and degradable, favoring sustainable applications and reconstruction of the device with new functions. Such HSE with multiple functions and favorable attributes should open opportunities in next-generation electronic skins and hydrogel machines.
Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Alginatos , Biopolímeros , Eletrônica , HumanosRESUMO
Sequential deformations of patterned hydrogels into 3D configurations with multilevel structures are reported, which are realized for the first time in self-shaping materials. The periodically patterned single-layer hydrogels with different polymers are fabricated by multi-step photolithography. After swelling in water, the expansion of compartmentalized high-swelling gels is constrained by the dispersed non-swelling gels, resulting in out-of-plane buckling with high cooperativity and thus forming alternating concave-convex configuration. When the dispersed non-swelling gels are partly replaced by thermoresponsive ones, the preformed overall flat, yet locally undulant, hydrogel deforms further into dome-, saddle-, or sandglass-like configurations at elevated temperature. As such, multilevel 3D structures can be achieved via prebuilt mechanical/geometric cues in a sequentially controlled manner. This conceptual design and sequential deformation of patterned hydrogels to form 3D configurations with multilevel structures should enrich the deformation/functioning modes of morphing materials and broaden their applications in diverse areas.
Assuntos
Hidrogéis/química , Polímeros/química , Temperatura , Água/química , Fenômenos Mecânicos , Modelos Moleculares , Conformação MolecularRESUMO
A new strategy is introduced to prepare an adaptive polymer gel that has a unique adaptability in response to environmental stimuli. This gel is prepared by the thiol-ene "click" reaction between a bisvinyl [2]catenane and a poly(ethylene glycol) derivative containing multiple thiol groups. The catenane crosslinker is responsive to external stimuli due to the existence of intercomponent hydrogen bonding (IHB). The strong IHB restricts the rotation and movement of the crosslinker, giving it a rigid feature; however, the crosslinker becomes flexible when the IHB is destroyed. In consequence, the resulting gel can be reversibly switched between tough and soft states under stimulations.
Assuntos
Antracenos/química , Reagentes de Ligações Cruzadas/química , Polietilenoglicóis/química , Géis/química , Ligação de Hidrogênio , Estrutura Molecular , Compostos de Sulfidrila/químicaRESUMO
Constructing dual or multiple noncovalent crosslinks is highly effective to improve the mechanical and stimuli-responsive properties of supramolecular physical hydrogels, due to the synergistic effects of different noncovalent bonds. Herein, a series of tough physical hydrogels are prepared by solution casting and subsequently swelling the films of poly(ureidopyrimidone methacrylate-co-stearyl acrylate-co-acrylic acid). The hydrophobic interactions between crystallizable alkyl chains and the quadruple hydrogen bonds between ureidopyrimidone (UPy) motifs serve as the dual crosslinks of hydrogels. Synergistic effects between the hydrophobic interactions and hydrogen bonds render the hydrogels excellent mechanical properties, with tensile breaking stress up to 4.6 MPa and breaking strain up to 680%. The UPy motifs promote the crystallization of alkyl chains and the hydrophobic alkyl chains also stabilize UPy-UPy hydrogen bonding. The resultant hydrogels are responsive to multiple external stimuli, such as temperature, pH, and ion; therefore, they show the thermal-induced dual and metal ion-induced triple shape memory behaviors.
Assuntos
Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Polímeros/química , Acrilatos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Pirimidinonas/químicaRESUMO
CBABC-type poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) pentablock copolymers composed of a central PEG block (A) and enantiomeric poly(l-lactic acid) (PLLA, B), poly(d-lactic acid) (PDLA, C) blocks were synthesized. Such pentablock copolymers form physical hydrogels at high concentrations in an aqueous solution, which stem from the aggregation and physical bridging of copolymer micelles. These gels are thermoresponsive and turn into sols upon heating. Physical gelation, gel-to-sol transition, crystalline state, microstructure, rheological behavior, biodegradation, and drug release behavior of PLA/PEG pentablock copolymers and their gels were investigated; they were also compared with PLA-PEG-PLA triblock copolymers containing the isotactic PLLA or atactic poly(d,l-lactide) (PDLLA) endblocks and PLLA-PEG-PLLA/PDLA-PEG-PDLA enantiomeric mixtures. PLA hydrophobic domains in pentablock copolymer gels changed from a homocrystalline to stereocomplexed structure as the PLLA/PDLA block length ratio approached 1/1. The gel of symmetric pentablock copolymer exhibited a wider gelation region, higher gel-to-sol transition temperature, higher hydrophobic domain crystallinity, larger intermicellar distance, higher storage modulus, and slower degradation and drug release rate compared to those of the asymmetric PLA/PEG pentablock copolymers or triblock copolymers. SAXS results indicated that the PLLA/PDLA blocks stereocomplexation in pentablock copolymers facilitated the intermicellar aggregation and bridging. Cylindrical ordered structures were observed in all the gels formed from the PLA/PEG pentablock and triblock copolymers. The stereocomplexation degree and intermicellar distance of the pentablock copolymer gels increased with heating.
Assuntos
Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Lactatos/química , Polietilenoglicóis/química , Temperatura , Liberação Controlada de Fármacos , Reologia , Espalhamento a Baixo Ângulo , Estereoisomerismo , Difração de Raios XRESUMO
Using adaptive soft materials to fabricate microstructured surfaces renders them with tunable topographic feature and thus controllable physical properties. Here, light responsive microstructured surfaces are reported with shape memory and tunable wetting behaviors; the surfaces are covered with micropillar arrays and constructed by lightly crosslinked azo-containing liquid crystalline network (LCN). UV light irradiation induces 25% contraction in length of the micropillars along their long axes and, as a consequence, the variations of topographic feature and wetting behavior of the surfaces. In addition, the LCNs exhibit shape memory properties, which can freeze the temporary topographic feature of microstructured surfaces (formed under UV irradiation and relatively high temperature) and enable application of their functionalities at mild conditions. This light responsiveness makes it feasible to remotely and precisely tune the local regions of microstructured surfaces, which should broaden the applications of adaptive surfaces in regulating the wetting, optical, and adhesion properties in selected regions.
Assuntos
Cristais Líquidos/química , Polímeros/química , Compostos Azo/química , Cristais Líquidos/efeitos da radiação , Polímeros/efeitos da radiação , Propriedades de Superfície , Raios Ultravioleta , MolhabilidadeRESUMO
The design of soft robots capable of navigation underwater has received tremendous research interest due to the robots' versatile applications in marine explorations. Inspired by marine animals such as jellyfish, scientists have developed various soft robotic fishes by using elastomers as the major material. However, elastomers have a hydrophobic network without embedded water, which is different from the gel-state body of the prototypes and results in high contrast to the surrounding environment and thus poor acoustic stealth. Here, we demonstrate a manta ray-inspired soft robot fish with tailored swimming motions by using tough and stiff hydrogels as the structural elements, as well as a dielectric elastomer as the actuating unit. The switching between actuated and relaxed states of this unit under wired power leads to the flapping of the pectoral fins and swimming of the gel fish. This robot fish has good stability and swims with a fast speed (â¼10 cm/s) in freshwater and seawater over a wide temperature range (4-50 °C). The high water content (i.e., â¼70 wt %) of the robot fish affords good optical and acoustic stealth properties under water. The excellent mechanical properties of the gels also enable easy integration of other functional units/systems with the robot fish. As proof-of-concept examples, a temperature sensing system and a soft gripper are assembled, allowing the robot fish to monitor the local temperature, raise warning signals by lighting, and grab and transport an object on demand. Such a robot fish should find applications in environmental detection and execution tasks under water. This work should also be informative for the design of other soft actuators and robots with tough hydrogels as the building blocks.
Assuntos
Robótica , Animais , Robótica/métodos , Hidrogéis , Elastômeros/química , Peixes , ÁguaRESUMO
To mimic biological tissues with high toughness such as cartilage, it is highly desired to fabricate stable and tough hydrogels with intricate shapes to act as a structural support. Extrusion-based 3D printing is a promising method to fabricate 3D scaffolds with various architectures; however, printing tough hydrogel structures with high fidelity and resolution is still a challenge. In this work, we adopt the fast sol-to-gel transition of κ-carrageenan in the solution of acrylamide upon cooling to fix the printed scaffolds and polymerize the precursor solution to form the second network. The printed constructs of κ-carrageenan/polyacrylamide double-network gels are toughened by soaking in an aqueous solution of zirconyl chloride to form coordination complexes between the Zr4+ ions and sulfate groups of κ-carrageenan. The obtained hydrogels are stable in water and possess good mechanical properties, with a tensile breaking stress of 1-2 MPa, breaking strain of 100-150%, and Young's modulus of 4-10 MPa. The printed grid can hold 150 times its own weight. 3D printed constructs with a high aspect ratio and shape fidelity are obtained by optimizing the printing parameters. Furthermore, a biomimetic strategy is applied to construct a hydrogel composite by filling the printed tough hydrogel scaffold with a cell-laden fibrin hydrogel as the soft substance. Chondrocytes in the hydrogel composite maintain high viability after cyclic compression, demonstrating the load-bearing capacity of the tough scaffold and favorable microenvironment for cells provided by the embedded soft fibrin gel. We envision that this printing strategy for hydrogel constructs with high toughness and good stability, as well as the method to form tough-soft hydrogel composites, can be extended to other systems to develop structural elements and scaffolds towards applications in biomedical devices and tissue engineering.
Assuntos
Resinas Acrílicas/química , Carragenina/química , Hidrogéis/química , Alicerces Teciduais/química , Linhagem Celular Tumoral , Cloretos/química , Complexos de Coordenação/química , Módulo de Elasticidade , Fibrina/química , Humanos , Impressão Tridimensional , Resistência à Tração , Engenharia Tecidual , Zircônio/químicaRESUMO
Revealing the relationship between network topologies and mechanical properties of hydrogels is fundamental yet challenging in the design of tough soft materials. Here, we report a series of hydrogels using N-isopropyl acrylamide (NIPAm) and acrylic acid (AAc) as the basic units to form a single network of the copolymer, a semi-interpenetrated network of two homopolymers, and a grafted network with homopolymer chains anchored on another homopolymer network, to investigate the influence of network architectures on the mechanical properties and thermal responses of the gels. We found that the properties of the gels are also significantly influenced by the formation of hydrogen bonds between poly(N-isopropyl acrylamide) (PNIPAm) and poly(acrylic acid) (PAAc) segments. The gels with the single network of poly(NIPAm-co-AAc) are mechanically weak due to the low efficiency for forming robust hydrogen bonds, while micro-segregated domains are formed in the hydrogels with a semi-interpenetrated network structure due to the formation of inter-chain hydrogen bonds that favors energy dissipation and toughening of the gels. On the other hand, dense hydrogen bonds form between the grafted PNIPAm chains and the PAAc network, resulting in nano-segregated domains and excellent mechanical properties of the gels. The hydrogels with the grafted network structure exhibit a more repeatable response to temperature than those with the semi-interpenetrated network structure due to the relatively stable hydrogen-bond network. The comparison of the mechanical properties and thermal stability of the hydrogels with the same composition but different topological networks should be informative for engineering hydrogel properties or functions by tailoring the network structures.
Assuntos
Hidrogéis/química , Polímeros/química , Hidrogéis/síntese química , Teste de Materiais , Tamanho da Partícula , Polímeros/síntese químicaRESUMO
A hydrogel with cylindrically symmetric structure at macroscopic scale has been developed by polymerization of a cationic monomer in the presence of a small amount of semi-rigid polyanion poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) in a cylinder glass tube. The polyion complex radially aligns in the outer region of the synthesized cylinder gel. On the other hand, it orients in concentric and axial directions in the inner region. To the authors' knowledge, this is the first report of such millimeter-scale ordered structure developed in a polymeric hydrogel. We elucidate that homeotropic alignment on the glass wall is energetically favorable for the semi-rigid polyion complex, resulting in the radial orientation in the outer region. In the inner region, the oriented structures result from the monomer difffusion (due to the heterogeneous polymerization) that induces PBDT orientation perpendicular to the diffusion direction. The structured gels showing sensitive response of birefringence to external force are expected to find applications in optical sensors.
Assuntos
Hidrogéis/química , Ftalimidas/química , Polímeros/química , Birrefringência , Vidro/química , Microscopia , Processos Fotoquímicos , SoluçõesRESUMO
The widespread application of thermo-responsive hydrogels requires materials with robust mechanical properties and tunable responsiveness. Herein, we report robust thermo-responsive physical hydrogels with a tunable network structure and responsiveness by controlling the manner of crystallization of hydrophobic blocks. Biocompatible, stereocomplexable poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) were introduced into thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) to obtain the enantiomeric grafted copolymers PNIPAM-g-PLLA and PNIPAM-g-PDLA and their corresponding hydrogels. The hydrophobic PLLA/PDLA domains served as physical crosslinking junctions in the hydrogels. The crystalline structure of the hydrogels can be facilely tuned by varying the ratio of PLLA/PDLA enantiomeric blocks. Stereocomplex (SC) crystallization between PLLA and PDLA facilitates the formation of H-bonded hydrophobic domains with denser chain packing, which endows the racemic hydrogels with a stronger network structure, higher mechanical strength, and better solvent resistance compared to enantiopure examples. The hydrogels exhibit good thermo-sensitivity in water; the stronger racemic hydrogel network restricts volume shrinkage and water desorption at high temperatures, enabling the facile control of thermo-responsiveness. The crystallization-tuned thermo-responsiveness of racemic and enantiopure hydrogels also allows for the design of assembled bilayer hydrogels capable of thermally triggered reversible shape morphing.
Assuntos
Hidrogéis/química , Temperatura , Resinas Acrílicas/química , Interações Hidrofóbicas e Hidrofílicas , Poliésteres/química , EstereoisomerismoRESUMO
Shape deformations are prevalent in nature, which are closely related to the heterogeneous structures with a feature of fibrous elements embedded in a matrix. The microfibers with specific orientations act as either passive geometrical constraints in an active matrix or active elements in a passive matrix, which generate programmed internal stresses and drive shape morphing under external stimuli. Morphing materials can be designed in a biomimetic way, yet it is challenging to fabricate composite hydrogels with well-distributed fibers by a facile strategy. Here, we demonstrate the fabrication of microfiber-embedded hydrogels facilitated by the extrusion-based printing technology. Programmed deformations are achieved in these hydrogels with microfibers distributed in the upper and/or bottom layers of the gel matrix. Under external stimuli, the microfibers and the gel matrix have different responses that produce internal stresses and result in programmable deformations of the composite gel. Multiple shape transformations are realized in the hydrogel by embedding multiple types of responsive microfibers in the passive or active matrix, which is fabricated with the assistance of multinozzle printing. A soft hook is designed to show the capacity of the composite hydrogel to hold and move an object in a saline solution. This facile and versatile strategy provides an alternative way to prepare biomimetic hydrogels with potential applications in biomedical devices, flexible electronics, and soft robots.
Assuntos
Materiais Biomiméticos/química , Hidrogéis/química , Acrilamidas/química , Resinas Acrílicas/química , Módulo de Elasticidade , Resistência à TraçãoRESUMO
Many creatures have the ability to traverse challenging environments by using their active muscles with anisotropic structures as the motors in a highly coordinated fashion. However, most artificial robots require multiple independently activated actuators to achieve similar purposes. Here we report a hydrogel-based, biomimetic soft robot capable of multimodal locomotion fueled and steered by light irradiation. A muscle-like poly(N-isopropylacrylamide) nanocomposite hydrogel is prepared by electrical orientation of nanosheets and subsequent gelation. Patterned anisotropic hydrogels are fabricated by multi-step electrical orientation and photolithographic polymerization, affording programmed deformations. Under light irradiation, the gold-nanoparticle-incorporated hydrogels undergo concurrent fast isochoric deformation and rapid increase in friction against a hydrophobic substrate. Versatile motion gaits including crawling, walking, and turning with controllable directions are realized in the soft robots by dynamic synergy of localized shape-changing and friction manipulation under spatiotemporal light stimuli. The principle and strategy should merit designing of continuum soft robots with biomimetic mechanisms.
Assuntos
Biomimética/métodos , Locomoção , Nanogéis/química , Robótica/métodos , Fricção , Músculo Esquelético/fisiologiaRESUMO
Living organisms use musculatures with spatially distributed anisotropic structures to actuate deformations and locomotion with fascinating functions. Replicating such structural features in artificial materials is of great significance yet remains a big challenge. Here, a facile strategy is reported to fabricate hydrogels with elaborate ordered structures of nanosheets (NSs) oriented under a distributed electric field. Multiple electrodes are distributed with various arrangements in the precursor solution containing NSs and gold nanoparticles. A complex electric field induces sophisticated orientations of the NSs that are permanently inscribed by subsequent photo-polymerization. The resultant anisotropic nanocomposite poly(N-isopropylacrylamide) hydrogels exhibit rapid deformation upon heating or photoirradiation, owing to the fast switching of permittivity of the media and electric repulsion between the NSs. The complex alignments of NSs and anisotropic shape change of discrete regions result in programmed deformation of the hydrogels into various configurations. Furthermore, locomotion is realized by a spatiotemporal light stimulation that locally triggers time-variant shape change of the composite hydrogel with complex anisotropic structures. Such a strategy on the basis of the distributed electric-field-generated ordered structures should be applicable to gels, elastomers, and thermosets loaded with other anisotropic particles or liquid crystals, for the design of biomimetic/bioinspired materials with specific functionalities.
Assuntos
Eletricidade , Hidrogéis/química , Nanoestruturas/química , Nanotecnologia , Resinas Acrílicas/química , Ouro/química , Nanopartículas Metálicas/químicaRESUMO
Ultrathin double-network hydrogels, which have super-high toughness under micro-scale thickness (elastic elongation epsilon(b) > 1000%, tensile strength sigma(b) > 2 MPa and tearing energy G approximately 600 J m(-2)), and solvent-triggered fast and high isometric stress generation, were synthesized by coupling the salt-controlled swelling process and polymer chain pre-reinforced technique.