Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 180: 183-196, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604465

RESUMO

The utilization of biodegradable magnesium (Mg) alloys in the fabrication of temporary non-vascular stents is an innovative trend in biomedical engineering. However, the heterogeneous degradation profiles of these biomaterials, together with potential bacterial colonization that could precipitate infectious or stenotic complications, are critical obstacles precluding their widespread clinical application. In pursuit of overcoming these limitations, this study applies the principles of biomimicry, particularly the hydrophobic and anti-fouling characteristics of lotus leaves, to pioneer the creation of nanocomposite coatings. These coatings integrate poly-trimethylene carbonate (PTMC) with covalent organic frameworks (COFs), to modify the stent's surface property. The strategic design of the coating's topography, porosity, and self-polishing capabilities collectively aims to decelerate degradation processes and minimize biological adhesion. The protective qualities of the coatings were substantiated through rigorous testing in both in vitro dynamic bile tests and in vivo New Zealand rabbit choledochal models. Empirical findings from these trials confirmed that the implementation of COF-based nanocomposite coatings robustly fortifies Mg implantations, conferring heightened resistance to both biocorrosion and biofouling as well as improved biocompatibility within bodily environments. The outcomes of this research elucidate a comprehensive framework for the multifaceted strategies against stent corrosion and fouling, thereby charting a visionary pathway toward the systematic conception of a new class of reliable COF-derived surface modifications poised to amplify the efficacy of Mg-based stents. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium (Mg) alloys are widely utilized in temporary stents, though their rapid degradation and susceptibility to bacterial infection pose significant challenges. Our research has developed a nanocomposite coating inspired by the lotus, integrating poly-trimethylene carbonate with covalent organic frameworks (COF). The coating achieved self-polishing property and optimal surface energy on the Mg substrate, which decelerates stent degradation and reduces biofilm formation. Comprehensive evaluations utilizing dynamic bile simulations and implantation in New Zealand rabbit choledochal models reveal that the coating improves the durability and longevity of the stent. The implications of these findings suggest the potential COF-based Mg alloy stent surface treatments and a leap forward in advancing stent performance and endurance in clinical applications.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis , Magnésio , Nanocompostos , Stents , Animais , Coelhos , Magnésio/química , Magnésio/farmacologia , Nanocompostos/química , Corrosão , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Incrustação Biológica/prevenção & controle , Dioxanos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Polímeros/química , Polímeros/farmacologia , Ligas/química , Ligas/farmacologia
2.
J Biomater Appl ; 31(8): 1203-1214, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28181449

RESUMO

Titanium (Ti) staples are not biodegradable, and anastomotic complications related to Ti staples are reported frequently. In the present study, the biocompatibility and degradation behavior of high-purity magnesium (HP Mg) staples with the small intestine were investigated. HP Mg staples did not affect the relative growth rate, cell cycle and apoptosis of primary rectal mucosal epithelial cells (IEC-6) in vitro. At one, two and three days after immersion in intestinal juice, the weight of the 30 rinsed HP Mg staples reduced by 7.5 ± 1.6, 10.6 ± 2.2 and 13.5 ± 2.1 mg, respectively, and those in the Hanks' solution reduced by 3.9 ± 0.8, 6.1 ± 1.2 and 7.1 ± 2.4 mg. Extracts of HP Mg staples were bio-safe for IEC-6, and the corrosion rate of HP staples was faster in the small intestinal juice than in the Hanks' solution. In the in vivo experiments, the small intestine of the minipigs was anastomosed by HP Mg and Ti staples. HP Mg staples neither affected important bio-chemical parameters nor induced serious inflammation or necrosis in the anastomosis tissues. The residual weight of a HP Mg staples (0.81 ± 0.13 mg) was 89.7% of the original weight (9 ± 0.09 mg) one month after surgery. The in vivo corrosion rate for one HP Mg staple was determined to be∼0.007 ± 0.001 mm·month-1. The preliminary results of the biocompatibility and degradation of high-purity Mg anastomotic staples are promising, and further studies will be initiated to study in more detail.


Assuntos
Implantes Absorvíveis , Anastomose Cirúrgica/instrumentação , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Intestino Delgado/cirurgia , Suturas , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Suínos , Porco Miniatura , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA