RESUMO
The adsorption behavior of human fibrinogen (Hfg) on single-walled carbon nanotube (SWNT) films was investigated using scanning electron microscopy (SEM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It was shown in the SEM images that fibrinogen was adsorbed strongly on the surface of SWNT when the samples were incubated in the Hfg solutions for 10 min. The dependence of adsorption on the concentration of fibrinogen was also investigated and it was found that adsorption increased with increasing concentration. In order to further explore the adsorption of fibrinogen on SWNT surface, NEXAFS spectra were obtained at the N K-edge and the C K-edge. The results confirmed the conclusion regarding the dependence of adsorption on fibrinogen concentration. It is demonstrated that, due to its high sensitivity to the surface elements, NEXAFS spectroscopy is a powerful tool to investigate the adsorption of fibrinogen on SWNT films.
Assuntos
Fibrinogênio/química , Membranas Artificiais , Nanotubos de Carbono/química , Adsorção , Humanos , Tamanho da Partícula , Análise Espectral , Propriedades de Superfície , Raios XRESUMO
We report the direct synthesis of strong, highly conducting, and transparent single-walled carbon nanotube (SWNT) films. Systematically, tests reveal that the directly synthesized films have superior electrical and mechanical properties compared with the films made from a solution-based filtration process: the electrical conductivity is over 2000 S/cm and the strength can reach 360 MPa. These values are both enhanced by more than 1 order. We attribute these intriguing properties to the good and long interbundle connections. Moreover, by the help of an extrapolated Weibull theory, we verify the feasibility of reducing the interbundle slip by utilizing the long-range intertube friction and estimate the ultimate strength of macroscale SWNTs without binding agent.