Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hazard Mater ; 442: 130078, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303343

RESUMO

Microplastics (MPs) are substrates available for biofilms colonization in natural water environments. The biofilms formation may enhance the ability of MPs to adsorb harmful contaminants. Herein, we investigated the biofilms formation of three different MPs (PVC, PA and HDPE) in simulated natural environment, and observed the chemical structure, charge property, hydrophobicity and other properties of MPs affect microbial biomass and community composition. More importantly, potential pathogens were found in all three MPs biofilms. Furthermore, the adsorption capacities of original MPs and biological aging MPs for norfloxacin (NOR) was compared. HDPE has the largest adsorption capacity for NOR, while PA has the smallest adsorption capacity for NOR. It was concluded that the formation of biofilms enhanced the adsorption of NOR by 50.60 %, 24.17 % and 46.02 % for PVC, PA and HDPE, respectively. In addition, hydrogen-bond interaction, electrostatic interaction and hydrophobic interaction were found to dominate the adsorption of NOR by MPs. Our study contributed to improve the understanding of the interactions between aging MPs and contaminants in the natural water environments, and provided essential information for ecological risk assessment of MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/química , Adsorção , Antibacterianos , Polietileno/química , Cloreto de Polivinila , Poluentes Químicos da Água/análise , Biofilmes , Água , Água Doce
2.
J Hazard Mater ; 424(Pt B): 127286, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879504

RESUMO

The excellent properties of plastics make them widely used all over the world. However, when plastics enter the environmental medium, microplastics will inevitably be produced due to physical, chemical and biological factors. Studies have shown that microplastics have been detected in terrestrial, aquatic and atmospheric environments. In addition, the presence of microplastics will provide a new artificial adhesion substrate for biofilms. It has been proved that the formation of biofilms could significantly change some properties of microplastics. Some studies have found that microplastics attached with biofilms have higher environmental risks and eco-toxicity. Therefore, considering the widespread existence of microplastics and the ecological risks of microplastic biofilms, the physical and chemical properties of biofilms on microplastics and their impact on microplastics in aqueous environment are worth reviewing. In this paper, we comprehensively reviewed representative studies in this area. Firstly, this study reviews that the existence of biofilms could change the transport and deposition of microplastics. Subsequently, the presence of biofilms would enhance the ability of microplastics to accumulate pollutant, such as persistent organic pollutants, heavy metals and antibiotics. Moreover, the effect of biofilms on microplastics enrichment of harmful microorganisms is summarized. Finally, some future research needs and strategies are proposed to better understand the problem of biofilms on microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Biofilmes , Monitoramento Ambiental , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
J Environ Sci (China) ; 147: 665-676, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003081

RESUMO

Microplastics (MPs) are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings. Studies on the interaction and joint toxicity of MPs on engineered nanoparticles (ENPs) are exhaustive, but limited research on the effect of MPs on the properties of ENPs in multi-solute systems. Here, the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time. The results demonstrated that MPs enhanced the adsorption affinity of ENPs to antibiotics and MPs before and after aging showed different effects on ENPs. Aged polyamide prevented aggregation of ZnONPs by introducing negative charges, whereas virgin polyamide affected ZnONPs with the help of electrostatic attraction. FT-IR and XPS analyses were used to probe the physicochemical interactions between ENPs and MPs. The results showed no chemical interaction and electrostatic interaction was the dominant force between them. Furthermore, the adsorption rate of antibiotics positively correlated with pH and humic acid but exhibited a negative correlation with ionic strength. Our study highlights that ENPs are highly capable of accumulating and transporting antibiotics in the presence of MPs, which could result in a widespread distribution of antibiotics and an expansion of their environmental risks and toxic effects on biota. It also improves our understanding of the mutual interaction of various co-existing contaminants in aqueous environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Microplásticos/química , Poluentes Químicos da Água/química , Óxido de Zinco/química , Nanopartículas/química , Modelos Químicos , Antibacterianos/química , Substâncias Húmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA