Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130268, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154737

RESUMO

The complexity of biomass components leads to significant variations in the performance of biomass-based carbon dots (CDs). To shed light on this matter, this study presents a comparative analysis of the fluorescence properties of CDs using pure cellulose, lignin, and protein as models. Three CDs showed different fluorescent properties, resulting from the structure difference and carbonization behavior in the hydrothermal. The relatively gentle thermal degradation of proteins allows the macromolecular structure of amino acids to be preserved. This preservation results in a more regular lattice structure, a larger sp2 domain size, and N-doping, which contribute to the highest quantum yield (QY) of 8.7% of the CDs. In contrast, cellulose undergoes more severe thermal degradation with large amounts of small molecules generated, resulting in the CDs with fewer surface defects, more irregular lattice structures, and lower QY. These results provide a guideline for the design of carbon dots from different biomass.


Assuntos
Celulose , Lignina , Celulose/química , Carbono/química , Biomassa , Fluorescência , Corantes , Corantes Fluorescentes/química
2.
Environ Technol ; 44(5): 631-646, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34516358

RESUMO

The adsorption of chlorinated aromatic compounds (CACs) on pristine biochar was often limited. Surface modification can greatly improve the adsorption capacity of biochar. In this work, by pyrolysis activation of rubber-seed shell wastes, nitrogen auto-doped biochar (RSS-NBC) was synthesized and used for purifying CACs-containing wastewater. Systematic characterization results showed that after proper treatment, the as-prepared RSS-NBC had high specific surface area, abundant surface oxygen- and nitrogen-containing functional groups, and nano-scale pore structure. Batch adsorption experiments were conducted with using three typical CACs probing pollutants, i.e. 1,2-dichlorobenzene (1,2-DCB), 2,4-dichlorophenol (2,4-DCP) and 2,4-dichlorobenzoic acid (2,4-DCBA). The adsorption experiments results showed that the maximum adsorption amounts of 1, 2-DCB, 2,4-DCP, and 2,4-DCBA could reach 2284, 1921, and 1142 mg/g at 298.15 K. Moreover, 90% of the equilibrium adsorption amount can be reached within 0.5 h. The adsorption kinetic results showed that the adsorption processes of the three CACs followed the pseudo-second-order rate model and were dominated by chemisorption. Also, the adsorption isotherms of 1, 2-DCB and 2, 4-DCP belonged to the Freundlich model and were valid for multilayer adsorption, while the adsorption of 2,4-DCBA followed Langmuir model and single-layer adsorption. The thermodynamics data indicated that the spontaneous adsorption process of 1, 2-DCB and 2, 4-DCP was endothermic while that of 2,4-DCBA was exothermic. After 5 cycles of adsorption-regeneration, the removal efficiency of RSS-NBC particles still remained more than 80% for the three typical CACs, indicating that it could be reused as an effective and retrievable adsorbent in the treatment of CACs-containing effluents.


Assuntos
Borracha , Poluentes Químicos da Água , Adsorção , Pirólise , Carvão Vegetal/química , Água , Cinética
3.
Int J Biol Macromol ; 245: 125511, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356693

RESUMO

Large bone defects have presented a significant challenge in orthopedic treatments, and the emergence of tissue-engineered scaffolds has introduced new avenues for treatment. Nonetheless, the clinical application of such scaffolds has been hindered by drawbacks like inadequate mechanical properties, and deficient osteogenesis. Herein, a biocompatible polylactic acid (PLA) based composite was proposed to emulate cancellous bone's morphology by incorporating nano-hydroxyapatite (nHA). In addition, a quantity of Mg2+ and chitosan (CS) as active osteogenic factors were adopted to imitate the bone marrow mesenchymal components in vivo. Using a pre-evaporated solvent and sacrificial multi-template techniques, the cellular PLA-based tissue engineering scaffolds containing macropores larger than 100 µm and micropores smaller than 10 µm were developed. The scaffold's bionic structure, osteogenic active component, and multi-scale cellular make it comparable to cancellous bone, with favorable mechanical properties and hydrophilicity. Vitro tests using Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (rBMSCs) demonstrated the scaffold's excellent biocompatibility to induce high efficiency of osteogenic differentiation. The bionic porous scaffold with multi-scale cellular structure also can recruit rBMSCs, promote bone regrowth and osteogenic differentiation, and facilitate the regeneration of defective bone tissue for repair. This contribution presented a promising strategy for future advancements in bone tissue engineering.


Assuntos
Biônica , Osteogênese , Ratos , Animais , Ratos Sprague-Dawley , Alicerces Teciduais/química , Osso e Ossos , Poliésteres/farmacologia , Poliésteres/química , Engenharia Tecidual/métodos , Diferenciação Celular , Regeneração Óssea
4.
J Colloid Interface Sci ; 606(Pt 1): 223-235, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390990

RESUMO

Recently, two-dimensional MXene demonstrated promising advantages to improve the flame-retardant performance of composites; however, its compatibility with polymer matrix is a great concern. In this study, MXene was first functionalized with phosphorylated chitosan (PCS) to obtain the PCS-MXene nanohybrid. The resulting nanohybrid was introduced into the thermoplastic polyurethane (TPU) matrix via solution mixing followed by the hot-pressing method, affording TPU/PCS-MXene nanocomposite. The resulting nanohybrid exhibited superior compatibility with the TPU matrix, enhancing mechanical performance of the TPU/PCS-MXene nanocomposite compared to the pristine TPU and TPU/MXene nanocomposite. Besides, the flame-retardant performance of TPU/PCS-MXene nanocomposite was greatly enhanced, while the smoke emission was effectively suppressed. As only 3 wt% PCS-MXene was introduced, peak heat release rate, total heat release, and total smoke production of the composite decreased by 66.7%, 21.0%, and 27.7%, respectively, compared to the pristine TPU. Systematical characterization was then carried out to investigate the enhancement mechanism of PCS-MXene, highlighting the crucial role of PCS combined with the catalytic effect of MXene. In brief, the compatibility issues of MXene were effectively addressed, and its flame-retardancy enhanced greatly via the PCS modification, the bio-based characteristic of which, in turn greatly benefits the further development of MXene-polymer composite.


Assuntos
Quitosana , Retardadores de Chama , Nanocompostos , Poliuretanos , Fumaça
5.
Langmuir ; 26(9): 6643-9, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20380472

RESUMO

We study the effect of primary particle morphology on intense shear-induced gelation without adding electrolytes. The primary particles are composed of a rubbery core grafted with a polystyrene shell. Depending on the shell-to-core mass ratio, the core can be partially covered by the shell, leading to strawberry-like morphology. It is found that at a fixed core mass the fractal dimension of the clusters constructing the gel decreases (i.e., more open cluster structure) as the shell mass increases, until reaching a plateau. The SEM pictures of the gels reveal that the structure variations are due to the occurrence of partial coalescence among particles, which decreases as the shell mass increases. In the region where the fractal dimension reaches a plateau, the coalescence is negligible. The conversion of the primary particles to gels is incomplete and increases as the extent of coalescence decreases. This is related to the fact that the smaller the extent of coalescence, the larger the cluster size. Thus, because of its cubic dependence on the cluster size, the aggregation rate increases as the extent of coalescence decreases, leading to increased conversion. It is therefore evident that the key parameter controlling the gel structure and the particle conversion is the core surface coverage by the shell. To further verify this conclusion, we have carried out the shear-induced gelation of another set of particles with varying core mass. It is found that the only parameter that can well correlate the values of the fractal dimension and particle conversion from the two sets of particles is the core surface coverage.


Assuntos
Polímeros/química , Elastômeros/química , Eletrólitos , Géis , Látex/química , Microscopia Eletrônica de Varredura , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA