Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 204: 36-45, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30875517

RESUMO

In-stent restenosis is worsened by thrombosis, acute inflammation, and uncontrollable smooth muscle cells (SMCs) proliferation at the early stage of implantation. Tailoring the stent surface can inhibit thrombosis, intimal hyperplasia, and accelerate re-endothelialization. In situ nitric oxide (NO) generation is considered as a promising method to improve anti-coagulation and anti-hyperplasia abilities. Copper based metal organic frameworks showed great potential as catalysts for NO generation, and copper ion (Cu2+) was demonstrated to promote endothelial cells (ECs) growth. Herein, by using polydopamine as the linker and coating matrix, nanoscale copper-based metal organic frameworks (nano Cu-MOFs) were immobilized onto the titanium surface for simultaneous nitric oxide (NO) catalytic generation and Cu2+ delivery. The nano Cu-MOFs-immobilized coating exhibited desirable NO release and adaptable Cu2+ delivery. Such coating inhibited platelet aggregation and activation via NO-cGMP signaling pathway, and significantly reduced thrombosis in an ex vivo extracorporeal circulation model. NO release and Cu2+ delivery showed synergetic effect to promote EC proliferation. Moreover, SMCs and macrophage proliferation was suppressed by the nano Cu-MOFs-immobilized coating, thereby reducing neointimal hyperplasia in vivo. Overall, this biocompatible coating is convenient for the surface modification of cardiovascular stents and effectively prevents the late stent thrombosis and in-stent restenosis associated with stent implantation.


Assuntos
Sistema Cardiovascular/patologia , Materiais Revestidos Biocompatíveis/química , Cobre/química , Gasotransmissores/análise , Indóis/química , Estruturas Metalorgânicas/química , Nanopartículas/química , Polímeros/química , Stents , Animais , Proliferação de Células , GMP Cíclico/metabolismo , Células Endoteliais/citologia , Humanos , Implantes Experimentais , Masculino , Estruturas Metalorgânicas/ultraestrutura , Camundongos , Miócitos de Músculo Liso/citologia , Nanopartículas/ultraestrutura , Óxido Nítrico/metabolismo , Ativação Plaquetária , Adesividade Plaquetária , Células RAW 264.7 , Coelhos , Ratos Sprague-Dawley
2.
Colloids Surf B Biointerfaces ; 180: 168-176, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048242

RESUMO

Due to their relatively good biocompatibility and inactivity, titanium oxide films (Ti-O) are used in the coating of coronary stents, which reduces metal corrosion, slows metal ion release, and improves endothelial cell (EC) compatibility. Here, we report further functionalizing Ti-O with biological cues for selective endothelialization. Selenocystine with an l- or a d-enantiomer was first immobilized on the Ti-O film via polydopamine to generate nitric oxide (NO) endogenously, which inhibited smooth muscle cell (SMC) proliferation, followed by the grafting of a functional KREDVC peptide to induce EC adhesion. The synergistic effects of the immobilized KREDVC, surface chirality, and NO generation on selective endothelialization were investigated. The results showed that the surface chirality of the l-enantiomer and KREDVC grafting significantly enhanced the attachment and growth of ECs compared to SMCs. An in vivo study showed von Willebrand factor expression was increased and neointimal hyperplasia was significantly decreased in samples with l-selenocystine immobilization and KREDVC grafting. In summary, these findings provide new insights on the surface modification of cardiovascular implants with selective endothelialization.


Assuntos
Cistina/análogos & derivados , Hiperplasia/prevenção & controle , Indóis/química , Neointima/prevenção & controle , Oligopeptídeos/química , Compostos Organosselênicos/química , Polímeros/química , Titânio/química , Animais , Prótese Vascular/efeitos adversos , Implante de Prótese Vascular , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Cistina/química , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperplasia/etiologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neointima/etiologia , Neointima/metabolismo , Neointima/patologia , Óxido Nítrico/biossíntese , Óxido Nítrico/farmacologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Titânio/farmacologia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA