Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 115(8): 1031-1040, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35699855

RESUMO

A novel bacterial strain, TLK-CK17T, was isolated from cow dung compost sample. The strain was Gram-staining negative, non-gliding rods, aerobic, and displayed growth at 15-40 °C (optimally, 35 °C), with 0-5.0% (w/v) NaCl (optimally, 0.5) and at pH 6.5-8.5 (optimally, 7.0-7.5). The assembled genome of strain TLK-CK17T has a total length of 4.3 Mb with a G + C content of 68.2%. According to the genome analysis, strain TLK-CK17T encodes quite a few glycoside hydrolases that may play a role in the degradation of accumulated plant biomass in compost. On the basis 16S rRNA gene sequence analysis, strain TLK-CK17T showed the highest sequence similarity (98.9%) with L. penaei GDMCC 1.1817 T, followed by L. maris KCTC 42381 T (98.3%). Cells contained iso-C16:0, iso-C15:0, and summed feature 9 (comprising C17:1 ω9c and/or 10-methyl C16:0), as its major cellular fatty acids (> 10.0%) and ubiquinone-8 as the exclusively respiratory quinone. Diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol prevailed among phospholipids. Based on the phenotypic, genomic and phylogenetic data, strain TLK-CK17T represents a novel species of the genus Lysobacter, for which the name Lysobacter chinensis sp. nov. is proposed, and the type strain is TLK-CK17T (= CCTCC AB2021257T = KCTC 92122 T).


Assuntos
Compostagem , Lysobacter , Animais , Técnicas de Tipagem Bacteriana , Bovinos , Celulose/metabolismo , DNA Bacteriano/química , Ácidos Graxos/metabolismo , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Microbiologia do Solo
2.
Bioprocess Biosyst Eng ; 45(7): 1163-1174, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35661257

RESUMO

Aerobic composting is an efficient and environmentally friendly method of converting organic waste into nontoxic fertilizers or soil quality enhancers. The quality of the resultant compost depends greatly upon the composition of the substrate used. The initial carbon-to-nitrogen (C/N) ratio of the substrate is an important factor affecting the composting process. This study elucidated how initial C/N ratios affect the biodegradation of lignocellulose, due to changes in microbial community structure. Four different C/N ratios (20:1, 25:1, 30:1, and 35:1) were examined during a 35-day composting process. The degradation of cellulose, hemicellulose, and lignin was highest (35.7%, 30.6%, and 19.1% respectively) at a 30:1 C/N ratio; after 30 days, the 25:1 C/N ratio ranked second in terms of lignocellulosic degradation rate. The 30:1 C/N ratio further promoted the growth of functional microorganisms responsible for lignocellulose degradation (Luteimonas, Sphingobium, Trichoderma, Chaetomium, and Rosellinia), while the growth of dominant pathogenic microbes (Erwinia and Ulocladium) decreased significantly. These results confirm that the initial C/N ratio of the substrate has a significant effect on the microbial community and degradation of organic matter, during walnut branch composting. This process could therefore offer an alternative means of efficient recycling and recovery of waste branches.


Assuntos
Compostagem , Microbiota , Carbono , Lignina/metabolismo , Nitrogênio , Solo/química
3.
Bioengineered ; 14(1): 213-228, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37471462

RESUMO

Inoculation with exogenous microbial agents is a common method to promote organic waste degradation and improve the quality of compost. However, the biotic effects of different microbial agents are often quite different. To evaluate the potential effects of a complex bacterial agent comprised of three strains (belonging to Bacillus and Geobacillus) on lignocellulose degradation and the underlying microbial mechanisms during cow dung composting, two lab-scale composting experiments, a control and a bacterial inoculation treatment, were established. The results suggest that bacterial inoculation accelerated the rate of temperature increase and extended the thermophilic phase. Compared to those in the negative control group, cellulose, hemicellulose, and lignin degradation rates in the inoculated group increased from 53.3% to 70.0%, 50.2% to 61.3%, and 46.4% to 60.0%, respectively. The microbial community structure and diversity in the compost were clearly changed by the bacterial inoculation. Moreover, stamp analysis showed that inoculation modulated the key compost microbial functional populations linked to the degradation of lignocellulose. Correlation matrix analysis indicated that the expression of bacterial lignocellulolytic enzymes is closely related to key microbial functional populations. Overall, the results confirm the importance of bacterial inoculation, and have important implications for promoting the efficiency and quality of cow dung compost.


The effects of three Bacillus and Geobacillus strains on compost were established.Adding the complex bacterial agent increased the thermophilic phase.Inoculation promoted the abundance of key lignocellulose-degrading microbes.These findings will help promote the efficiency and quality of cow dung compost.


Assuntos
Compostagem , Lignina , Animais , Bovinos , Lignina/metabolismo , Bactérias/genética , Bactérias/metabolismo , Celulose/metabolismo , Solo
4.
Biomater Sci ; 7(4): 1345-1357, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30698174

RESUMO

Interleukin-2 (IL-2) is a potent T-cell mitogen that can adjuvant anti-cancer adoptive T-cell transfer (ACT) immunotherapy by promoting T-cell engraftment. However, the clinical applications of IL-2 in combination with ACT are greatly hindered by the severe adverse effects such as vascular leak syndrome (VLS). Here, we developed a synthetic delivery strategy for IL-2 via backpacking redox-responsive IL-2/Fc nanogels (NGs) to the plasma membrane of adoptively transferred T-cells. The NGs prepared by traceless chemical cross-linking of cytokine proteins selectively released the cargos in response to T-cell receptor activation upon antigen recognition in tumors. We found that IL-2/Fc delivered by T-cell surface-bound NGs expanded transferred tumor-reactive T-cells 80-fold more than the free IL-2/Fc of an equivalent dose administered systemically and showed no effects on tumor-infiltrating regulatory T-cell expansion. Intriguingly, IL-2/Fc NG backpacks that facilitated a sustained and slow release of IL-2/Fc also promoted the CD8+ memory precursor differentiation and induced less T-cell exhaustion in vitro compared to free IL-2/Fc. The controlled responsive delivery of IL-2/Fc enabled the safe administration of repeated doses of the stimulant cytokine with no overt toxicity and improved efficacy against melanoma metastases in a mice model.


Assuntos
Interleucina-2/farmacologia , Melanoma/patologia , Polietilenoglicóis/farmacologia , Polietilenoimina/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Interleucina-2/síntese química , Interleucina-2/química , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Nanogéis , Oxirredução , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoimina/síntese química , Polietilenoimina/química , Linfócitos T/imunologia , Linfócitos T/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-29333729

RESUMO

Cancer immunotherapy has recently shown dramatic clinical success inducing durable response in patients of a wide variety of malignancies. Further improvement of the clinical outcome with immune related cancer treatment requests more exquisite manipulation of a patient's immune system with increased immunity against diseases while mitigating the toxicities. To meet this challenge, biomaterials applied to immunoengineering are being developed to achieve tissue- and/or cell-specific immunomodulation and thus could potentially enhance both the efficacy and safety of current cancer immunotherapies. Here, we review the recent advancement in the field of immunoengineering using biomaterials and their applications in promoting different modalities of cancer immunotherapies, with focus on cell-, antibody-, immunomodulator-, and gene-based immune related treatments and their combinations with conventional therapies. Challenges and opportunities are discussed in applying biomaterials engineering strategies in the development of future cancer immunotherapies. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants.


Assuntos
Materiais Biocompatíveis , Imunoterapia , Neoplasias/terapia , Engenharia de Proteínas , Transferência Adotiva , Animais , Anticorpos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA