Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142341

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the top 15 most prevalent cancers worldwide. However, the current treatment models for OSCC (e.g., surgery, chemotherapy, radiotherapy, and combination therapy) present several limitations: damage to adjacent healthy tissue, possible recurrence, low efficiency, and severe side effects. In this context, nanomaterial-based photothermal therapy (PTT) has attracted extensive research attention. This paper reviews the latest progress in the application of biological nanomaterials for PTT in OSCC. We divide photothermal nanomaterials into four categories (noble metal nanomaterials, carbon-based nanomaterials, metal compounds, and organic nanomaterials) and introduce each category in detail. We also mention in detail the drug delivery systems for PTT of OSCC and briefly summarize the applications of hydrogels, liposomes, and micelles. Finally, we note the challenges faced by the clinical application of PTT nanomaterials and the possibility of further improvement, providing direction for the future research of PTT in OSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nanoestruturas , Neoplasias , Carbono , Carcinoma de Células Escamosas/terapia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Hidrogéis , Lipossomos , Micelas , Neoplasias Bucais/terapia , Nanoestruturas/uso terapêutico , Neoplasias/terapia , Terapia Fototérmica , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
2.
J Dent Sci ; 19(1): 86-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303882

RESUMO

Background/purpose: Aging severely impairs the beneficial effects of human dental pulp stem cells (hDPSCs) on cartilage regeneration. Lysine demethylase 3A (KDM3A) is involved in regulating mesenchymal stem cells (MSCs) senescence and bone aging. In this study, we investigated the role of KDM3A in hDPSCs aging and whether KDM3A could rejuvenate aged hDPSCs to enhance their chondrogenic differentiation capacity. Materials and methods: The cellular aging of hDPSCs was evaluated by senescence-associated ß-galactosidase (SA-ß-gal) staining. Protein levels were determined using Western blot analysis. KDM3A was overexpressed in aged hDPSCs by lentivirus infection. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) were used to determine the mRNA levels of stemness markers. Toluidine blue staining was used to evaluate the effect of KDM3A overexpression on the chondrogenic differentiation of aged hDPSCs. Results: hDPSCs at passage 12 or treated with etoposide exhibited augmented cellular senescence as evidenced by increased SA-ß-gal activity. KDM3A was significantly increased during senescence of hDPSCs. Overexpression of KDM3A did not affect the stemness properties but significantly promoted the chondrogenic differentiation of aged hDPSCs. Conclusion: Our findings indicate that KDM3A plays an important role in the maintenance of the chondrogenic differentiation capacity of aged hDPSCs and suggest that therapies targeting KDM3A may be a novel strategy to rejuvenate aged hDPSCs.

3.
J Funct Biomater ; 15(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39194671

RESUMO

Advanced periodontitis poses a significant threat to oral health, causing extensive damage and loss of both hard and soft periodontal tissues. While traditional therapies such as scaling and root planing can effectively halt the disease's progression, they often fail to fully restore the original architecture and function of periodontal tissues due to the limited capacity for spontaneous regeneration. To address this challenge, periodontal tissue engineering has emerged as a promising approach. This technology centers on the utilization of biomaterial scaffolds, which function as three-dimensional (3D) templates or frameworks, supporting and guiding the regeneration of periodontal tissues, including the periodontal ligament, cementum, alveolar bone, and gingival tissue. These scaffolds mimic the extracellular matrix (ECM) of native periodontal tissues, aiming to foster cell attachment, proliferation, differentiation, and, ultimately, the formation of new, functional periodontal structures. Despite the inherent challenges associated with preclinical testing, the intensification of research on biomaterial scaffolds, coupled with the continuous advancement of fabrication technology, leads us to anticipate a significant expansion in their application for periodontal tissue regeneration. This review comprehensively covers the recent advancements in biomaterial scaffolds engineered specifically for periodontal tissue regeneration, aiming to provide insights into the current state of the field and potential directions for future research.

4.
Adv Sci (Weinh) ; 10(24): e2206757, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386801

RESUMO

Dental pulp stem cells (DPSCs), characterized by easy availability, multi-lineage differentiation ability, and high proliferation ability, are ideal seed cells for cartilage tissue engineering. However, the epigenetic mechanism underlying chondrogenesis in DPSCs remains elusive. Herein, it is demonstrated that KDM3A and G9A, an antagonistic pair of histone-modifying enzymes, bidirectionally regulate the chondrogenic differentiation of DPSCs by controlling SOX9 (sex-determining region Y-type high-mobility group box protein 9) degradation through lysine methylation. Transcriptomics analysis reveals that KDM3A is significantly upregulated during the chondrogenic differentiation of DPSCs. In vitro and in vivo functional analyses further indicate that KDM3A promotes chondrogenesis in DPSCs by boosting the SOX9 protein level, while G9A hinders the chondrogenic differentiation of DPSCs by reducing the SOX9 protein level. Furthermore, mechanistic studies indicate that KDM3A attenuates the ubiquitination of SOX9 by demethylating lysine (K) 68 residue, which in turn enhances SOX9 stability. Reciprocally, G9A facilitates SOX9 degradation by methylating K68 residue to increase the ubiquitination of SOX9. Meanwhile, BIX-01294 as a highly specific G9A inhibitor significantly induces the chondrogenic differentiation of DPSCs. These findings provide a theoretical basis to ameliorate the clinical use of DPSCs in cartilage tissue-engineering therapies.


Assuntos
Condrogênese , Lisina , Lisina/metabolismo , Condrogênese/fisiologia , Metilação , Polpa Dentária/metabolismo , Células Cultivadas , Células-Tronco/metabolismo , Diferenciação Celular/genética
5.
J Funct Biomater ; 13(4)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36412861

RESUMO

Here, we developed a new synthetic method for the production of a new class of polymeric inorganic hybrid biomaterial that has potential for dental implant applications and, in general, other orthopedic applications owing to its excellent mechanical properties and biomechanical compatibility. The new hybrid biomaterial is a composite consisting of polyetherketoneketone (PEKK) and hydroxyapatite (HA). This hybrid material boasts several unique features, including its high HA loading (up to 50 wt%), which is close to that of natural human bone; the homogeneous HA distribution in the PEKK matrix without phase separation; and the fact that the addition of HA has no effect on the molecular weight of PEKK. Nanoindentation analysis was used to investigate the mechanical properties of the composite, and its nano/microstructure variations were investigated through a structural model developed here. Through nanoindentation technology, the newly developed PEKK/HA hybrid biomaterial has an indentation modulus of 12.1 ± 2.5 GPa and a hardness of 0.42 ± 0.09 GPa, which are comparable with those of human bone. Overall, the new PEKK/HA biomaterial exhibits excellent biomechanical compatibility and shows great promise for application to dental and orthopedic devices.

6.
Pharmaceutics ; 14(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297683

RESUMO

Periodontitis is a dysbiotic biofilm-induced and host-mediated inflammatory disease of tooth supporting tissues that leads to progressive destruction of periodontal ligament and alveolar bone, thereby resulting in gingival recession, deep periodontal pockets, tooth mobility and exfoliation, and aesthetically and functionally compromised dentition. Due to the improved biopharmaceutical and pharmacokinetic properties and targeted and controlled drug release, nano-based drug delivery systems have emerged as a promising strategy for the treatment of periodontal defects, allowing for increased efficacy and safety in controlling local inflammation, establishing a regenerative microenvironment, and regaining bone and attachments. This review provides an overview of nano-based drug delivery systems and illustrates their practical applications, future prospects, and limitations in the field of periodontal tissue regeneration.

7.
Stem Cell Reports ; 17(8): 1842-1858, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868309

RESUMO

Exosomes play a critical role in intracellular communication. The biogenesis and function of exosomes are regulated by multiple biochemical factors. In the present study, we find that mechanical force promotes the biogenesis of exosomes derived from periodontal ligament stem cells (PDLSCs) and alters the exosomal proteome profile to induce osteoclastic differentiation. Mechanistically, mechanical force increases the level of exosomal proteins, especially annexin A3 (ANXA3), which facilitates exosome internalization to activate extracellular signal-regulated kinase (ERK), thus inducing osteoclast differentiation. Moreover, the infusion of exosomes derived from PDLSCs into mice promotes mechanical force-induced tooth movement and increases osteoclasts in the periodontal ligament. Collectively, this study demonstrates that mechanical force treatment promotes the biogenesis of exosomes from PDLSCs and increases exosomal protein ANXA3 to facilitate exosome internalization, which activates ERK phosphorylation, thus inducing osteoclast differentiation. Our findings shed light on new mechanisms for how mechanical force regulates the biology of exosomes and bone metabolism.


Assuntos
Anexina A3 , Ligamento Periodontal , Animais , Anexina A3/metabolismo , Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Osteoclastos , Osteogênese/fisiologia , Células-Tronco/metabolismo
8.
Stem Cell Res Ther ; 12(1): 595, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863303

RESUMO

BACKGROUND: SATB2-associated syndrome (SAS) is a multisystem disorder caused by mutation of human SATB2 gene. Tooth agenesis is one of the most common phenotypes observed in SAS. Our study aimed at identifying novel variant of SATB2 in a patient with SAS, and to investigate the cellular and molecular mechanism of tooth agenesis caused by SATB2 mutation. METHODS: We applied whole exome sequencing (WES) to identify the novel mutation of SATB2 in a Chinese patient with SAS. Construction and overexpression of wild-type and the mutant vector was performed, followed by functional analysis including flow cytometry assay, fluorescent immunocytochemistry, western blot, quantitative real-time PCR and Alizarin Red S staining to investigate its impact on hDPSCs and the underlying mechanisms. RESULTS: As a result, we identified a novel frameshift mutation of SATB2 (c. 376_378delinsTT) in a patient with SAS exhibiting tooth agenesis. Human DPSCs transfected with mutant SATB2 showed decreased cell proliferation and odontogenic differentiation capacity compared with hDPSCs transfected with wild-type SATB2 plasmid. Mechanistically, mutant SATB2 failed to translocate into nucleus and distributed in the cytoplasm, failing to activate Wnt/ß-catenin signaling pathway, whereas the wild-type SATB2 translocated into the nucleus and upregulated the expression of active ß-catenin. When we used Wnt inhibitor XAV939 to treat hDPSCs transfected with wild-type SATB2 plasmid, the increased odontogenic differentiation capacity was attenuated. Furthermore, we found that SATB2 mutation resulted in the upregulation of DKK1 and histone demethylase JHDM1D to inhibit Wnt/ß-catenin signaling pathway. CONCLUSION: We identified a novel frameshift mutation of SATB2 (c.376_378delinsTT, p.Leu126SerfsX6) in a Chinese patient with SATB2-associated syndrome (SAS) exhibiting tooth agenesis. Mechanistically, SATB2 regulated osteo/odontogenesis of human dental pulp stem cells through Wnt/ß-catenin signaling pathway by regulating DKK1 and histone demethylase JHDM1D.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Via de Sinalização Wnt , Diferenciação Celular/genética , Polpa Dentária/metabolismo , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Mutação , Odontogênese/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Polymers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069312

RESUMO

Repairing tooth defects with dental resin composites is currently the most commonly used method due to their tooth-colored esthetics and photocuring properties. However, the higher than desirable failure rate and moderate service life are the biggest challenges the composites currently face. Secondary caries is one of the most common reasons leading to repair failure. Therefore, many attempts have been carried out on the development of a new generation of antimicrobial and therapeutic dental polymer composite materials to inhibit dental caries and prolong the lifespan of restorations. These new antimicrobial materials can inhibit the formation of biofilms, reduce acid production from bacteria and the occurrence of secondary caries. These results are encouraging and open the doors to future clinical studies on the therapeutic value of antimicrobial dental resin-based restoratives. However, antimicrobial resins still face challenges such as biocompatibility, drug resistance and uncontrolled release of antimicrobial agents. In the future, we should focus on the development of more efficient, durable and smart antimicrobial dental resins. This article focuses on the most recent 5 years of research, reviews the current antimicrobial strategies of composite resins, and introduces representative antimicrobial agents and their antimicrobial mechanisms.

10.
Stem Cell Res Ther ; 9(1): 221, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134957

RESUMO

BACKGROUND: Tooth agenesis, one of the most common developmental anomalies, can affect the function and esthetics of patients. The aim of the present study was to identify genetic clues for familial tooth agenesis and explore the underlying mechanisms, focusing on the role of human dental pulp stem cells (hDPSCs). METHODS: We applied Sanger sequencing to identify the cause of oligodontia in a Chinese family. DNA transfection and functional analysis in DPSCs was also performed to explore the impact of the identified mutation on this phenotype. RESULTS: In this study, a novel frameshift mutation, the twenty-nucleotide deletion (c.128_147del20, p.Met43Serfsx125), in exon1 of MSX1 was detected in a Chinese family causing autosomal dominant nonsyndromic oligodontia. The mutation cosegregated with the tooth agenesis phenotype in this family. DPSCs transfected with mutant MSX1 plasmid showed decreased capacity of osteo/odontogenic differentiation with a lower expression level of dentin sialophosphoprotein (DSPP) and bone sialoprotein (BSP) compared with those transfected with control MSX1 plasmid. Mechanically, control MSX1 showed nuclear localization while the mutant MSX1 inhibited its nuclear translocation and localized on the cytoplasm to inhibit ERK phosphorylation. Furthermore, we inhibited the ERK pathway using ERK inhibitor (U0126) treatment in control MSX1-transfected DPSCs which could downregulate mineralized nodule formation and the expression of odontogenic genes. CONCLUSION: We demonstrated a novel MSX1 mutation causing familial nonsyndromic oligodontia and mechanically MSX1 regulates odontogenesis through the ERK signaling pathway in human dental pulp stem cells.


Assuntos
Anodontia/genética , Polpa Dentária/metabolismo , Mutação da Fase de Leitura , Fator de Transcrição MSX1/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Células-Tronco/metabolismo , Adolescente , Adulto , Anodontia/metabolismo , Anodontia/patologia , Butadienos/farmacologia , Diferenciação Celular , Núcleo Celular/metabolismo , Proliferação de Células , Polpa Dentária/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Família , Feminino , Regulação da Expressão Gênica , Genes Dominantes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Fator de Transcrição MSX1/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Linhagem , Fenótipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Plasmídeos/química , Plasmídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Células-Tronco/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA