Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Med Sci Monit ; 27: e930610, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34092782

RESUMO

BACKGROUND Periodontal ligament stem cells (PDLSCs) are promising seed cells for bone tissue engineering and periodontal regeneration applications. However, the mechanism underlying the osteogenic differentiation process remains largely unknown. Previous reports showed that prolactin-induced protein (PIP) was upregulated after PDLSCs osteogenic induction. However, few studies have reported on the function of PIP in osteogenic differentiation. The purpose of the present study was to investigate the effect of PIP on osteogenic differentiation of PDLSCs. MATERIAL AND METHODS The expression pattern of PIP during PDLSCs osteogenic differentiation was detected and the effect of each component in the osteogenic induction medium on PIP was also tested by qRT-PCR. Then, the PIP knockdown cells were established using lentivirus. The knockdown efficiency was measured and the proliferation, apoptosis, and osteogenic differentiation ability were examined to determine the functional role of PIP on PDLSCs. RESULTS QRT-PCR showed that PIP was sustainedly upregulated during the osteogenic induction process and the phenomenon was mainly caused by the stimulation of dexamethasone in the induction medium. CCK-8 and flow cytometer showed that knocking down PIP had no influence on proliferation and apoptosis of PDLSCs. ALP staining and activity, Alizarin Red staining, and western blot analysis demonstrated PIP knockdown enhanced the osteogenic differentiation and mineralization of PDLSCs. CONCLUSIONS PIP was upregulated after osteogenic induction; however, PIP knockdown promoted PDLSCs osteogenic differentiation. PIP might be a by-product of osteogenic induction, and downregulating of PIP might be a new target in bone tissue engineering applications.


Assuntos
Proteínas de Membrana Transportadoras , Osteogênese/fisiologia , Ligamento Periodontal , Células-Tronco/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo , Técnicas de Silenciamento de Genes/métodos , Regeneração Tecidual Guiada Periodontal/métodos , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Transdução de Sinais , Engenharia Tecidual/métodos
2.
J Periodontal Res ; 54(3): 286-299, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30474138

RESUMO

BACKGROUND AND OBJECTIVE: Mesenchymal stem cells (MSCs) have been widely used in tissue engineering, such as for regenerating the supporting structures of teeth destroyed by periodontal diseases. In recent decades, dental tissue-derived MSCs have drawn much attention owing to their accessibility, plasticity and applicability. Dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs) and gingival MSCs (GMSCs) are the most readily available MSCs among all types of dental MSCs. The purpose of this study was to comprehensively compare the characteristics of MSCs from dental pulp (DP), periodontal ligament (PDL) and gingiva (G) in vitro and thus provide insight into optimizing the performance of cells and seed cell selection strategies for tissue regeneration. MATERIALS AND METHODS: In this study, patient-matched (n = 5) cells derived from DP, PDL and G which, respectively, contained DPSCs, PDLSCs and GMSCs were evaluated using multiple methods in terms of their proliferation, senescence, apoptosis, multilineage differentiation and stemness maintenance after long-term passage. RESULTS: Mesenchymal stem cells-containing cells from G (MSCs/GCs) showed superior proliferation capability, whereas patient-matched MSCs-containing cells from PDL (MSCs/PDLCs) exhibited excellent osteogenic and adipogenic differentiation ability; MSCs-containing cells from DP (MSCs/DPCs) achieved mediocre results in both aspects. In addition, MSCs/GCs were the least susceptible to senescence, while MSCs/PDLCs were the most prone to ageing. Furthermore, the biological properties of these three types of cells were all affected after long-term in vitro culture. CONCLUSION: These three types of dental MSCs showed different biological characteristics. MSCs/PDLCs are the best candidate cells for bone regeneration, but the application of MSCs/PDLCs might be limited to certain number of passages. Improving the differentiation of MSCs/GCs remains the key issue regarding their application in tissue engineering.


Assuntos
Proliferação de Células , Polpa Dentária/citologia , Gengiva/citologia , Células-Tronco Mesenquimais/fisiologia , Ligamento Periodontal/citologia , Engenharia Tecidual , Apoptose , Diferenciação Celular , Células Cultivadas , Senescência Celular , Humanos , Células-Tronco Mesenquimais/classificação
3.
J Dermatol ; 48(11): 1731-1738, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34405432

RESUMO

The association between cheilitis granulomatosa and dental infections (dental caries and apical periodontitis) is still not well understood. Herein, we aimed to investigate the association in large hospital cases with cohort controls. Cheilitis granulomatosa cases (n = 181) were retrieved from Peking University Hospital of Stomatology and age- and sex-matched to controls (n = 181). The χ2 -test, Student's t-test, and Mann-Whitney U-test were used to compare the differences between groups. The χ2 -test and odds ratio were used to verify if there was an association and risk relationship. The results showed that both dental caries and apical periodontitis were associated with cheilitis granulomatosa (p < 0.001). Individuals with cheilitis granulomatosa had approximately a twofold increased frequency of dental caries than those without cheilitis granulomatosa (104/181, 57.5% vs. 53/181, 29.3%) (p < 0.001). The odds ratio of dental caries occurring in the case group compared to the control group was 3.211. The frequency of apical periodontitis in patients with cheilitis granulomatosa was significantly greater than in those without cheilitis granulomatosa (109/181, 60.2% vs. 28/181, 15.5%) (p < 0.001). The odds ratio was 8.272. Moreover, apical periodontitis was also locationally related to cheilitis granulomatosa (p < 0.001). Collectively, our study showed that the foci of dental infections are associated with cheilitis granulomatosa, suggesting that proper treatment of focal teeth may be important in the management of cheilitis granulomatosa.


Assuntos
Queilite , Cárie Dentária , Síndrome de Melkersson-Rosenthal , Estudos de Casos e Controles , Queilite/diagnóstico , Queilite/epidemiologia , Cárie Dentária/epidemiologia , Humanos , Razão de Chances
4.
Mol Oral Microbiol ; 34(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30387555

RESUMO

Human periodontal ligament stem cells (PDLSCs), a type of dental tissue-derived mesenchymal stem cells (MSCs), can be clinically applied in periodontal tissue regeneration to treat periodontitis, which is initiated and sustained by bacteria. Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, is a pertinent deleterious factor in the oral microenvironment. The aim of this study was to investigate the effect of LPS on the proliferation and osteogenic differentiation of PDLSCs, as well as the mechanisms involved. Proliferation and osteogenic differentiation of PDLSCs were detected under the stimulation of Escherichia coli-derived LPS. The data showed that E. coli-derived LPS did not affect the proliferation, viability, and cell cycle of PDLSCs. Furthermore, it promoted osteogenic differentiation with the activation of TAZ. Lentivirus-mediated depletion of TAZ (transcriptional activator with a PDZ motif) was used to determine the role of TAZ on LPS-induced enhancement of osteogenesis. PDLSCs cultured in osteogenic media with or without LPS and DKK1 (Wnt/ß-catenin pathway inhibitor) were used to determine the regulatory effect of Wnt signaling. We found that TAZ depletion offset LPS-induced enhancement of osteogenesis. Moreover, treatment with DKK1 offset LPS-induced TAZ elevation and osteogenic promotion. In conclusion, E. coli-derived LPS promoted osteogenic differentiation of PDLSCs by fortifying TAZ activity. The elevation and activation of TAZ were mostly mediated by the Wnt/ß-catenin pathway. PDLSC-governed alveolar bone tissue regeneration was not necessarily reduced under bacterial conditions and could be modulated by Wnt and TAZ.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/efeitos adversos , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , beta Catenina/metabolismo , Regeneração Óssea/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lentivirus/genética , Lipopolissacarídeos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Periodontite , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Transcriptoma , Via de Sinalização Wnt/efeitos dos fármacos
5.
J Orthop Surg Res ; 14(1): 55, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777111

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) and hyperlipidemia are negatively related to bone regeneration. The aim of this study was to evaluate the effect of high-fat and high-glucose microenvironment on bone regeneration and to detect the expression of runt-related transcription factor 2 (Runx2) and transcriptional co-activator with PDZ-binding domain (TAZ) during this process. METHODS: After establishing a high-fat and high-glucose mouse model, a 1 mm × 1.5 mm bone defect was developed in the mandible. On days 7, 14, and 28 after operation, bone regeneration was evaluated by hematoxylin-eosin staining, Masson staining, TRAP staining, and immunohistochemistry, while Runx2 and TAZ expression were detected by immunohistochemistry, RT-PCR, and Western blot analysis. RESULTS: Our results showed that the inhibition of bone regeneration in high-fat and high-glucose group was the highest among the four groups. In addition, the expression of Runx2 in high-fat, high-glucose, and high-fat and high-glucose groups was weaker than that in the control group, but the expression of TAZ only showed a decreasing trend in the high-fat and high-glucose group during bone regeneration. CONCLUSIONS: In conclusion, these results suggest that high-fat and high-glucose microenvironment inhibits bone regeneration, which may be related to the inhibition of Runx2 and TAZ expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Regeneração Óssea/fisiologia , Microambiente Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Dieta Hiperlipídica/efeitos adversos , Glucose/toxicidade , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Regeneração Óssea/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Expressão Gênica , Glucose/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transativadores
6.
Gene ; 699: 155-164, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30876821

RESUMO

Oral tissue-derived mesenchymal stem cells, such as periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs), possess different biological characteristics, but the molecular mechanism remains unclear, which restricts their application in tissue engineering. Long noncoding RNAs (lncRNAs) are known to be significant regulators of gene expression, but our knowledge about their roles in the regulation of stem cell biological properties is still limited. This study compared the lncRNA and mRNA expression profiles between PDLSCs and GMSCs through microarray analysis, and applied bioinformatics methods to analyze and predict the function and connection of differentially expressed genes, aiming to screen potential key regulators of diverse biological characteristics in PDLSCs and GMSCs. Microarray analysis showed that 2162 lncRNAs and 1347 mRNAs were significantly differentially expressed between PDLSCs and GMSCs. Gene ontology (GO) analysis and pathway analysis indicated that these differentially expressed genes were involved in diverse biological processes and signaling pathways. The gene signal network and pathway relation network predicted some potentially important regulators. The coding-noncoding gene coexpression network (CNC network) revealed many potential lncRNA-mRNA connection pairs that participated in the regulation of biological behaviors. These results stressed the roles of lncRNAs in controlling stem cell biological behaviors and provided guides for molecular mechanistic study of different biological characteristics in PDLSCs and GMSCs.


Assuntos
Gengiva/fisiologia , Células-Tronco Mesenquimais/fisiologia , Ligamento Periodontal/fisiologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma/genética , Adolescente , Adulto , Diferenciação Celular/genética , Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , Transdução de Sinais/genética , Adulto Jovem
7.
Stem Cells Dev ; 27(23): 1634-1645, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30234437

RESUMO

Mesenchymal stem cells (MSCs) have been considered promising tools for tissue engineering and regenerative medicine. However, the optimal cell source for bone regeneration remains controversial. To better identify seed cells for bone tissue engineering, we compared MSCs from seven different tissues, including four from dental origins, dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), gingival MSCs (GMSCs), and dental follicle stem cells (DFSCs); two from somatic origins, bone marrow-derived MSCs (BM-MSCs) and adipose-derived stem cells (ADSCs); and one from birth-associated perinatal tissue umbilical cord (UCMSCs). We cultured the cells under a standardized culture condition and studied their biological characteristics. According to our results, these cells exhibited similar immunophenotype and had potential for multilineage differentiation. MSCs from dental and perinatal tissues proliferated more rapidly than those from somatic origins. Simultaneously, DPSCs and PDLSCs owned stronger antiapoptotic ability under the microenvironment of oxidative stress combined with serum deprivation. In respect to osteogenic differentiation, the two somatic MSCs, BM-MSCs and ADSCs, demonstrated the strongest ability for osteogenesis compared to PDLSCs and DFSCs, which were just a little bit weaker than the formers. However, GMSCs and UCMSCs were the most pertinacious ones to differentiate to osteoblasts. We also revealed that the canonical intracellular protein kinase-based cascade signaling pathways, including PI3K/AKT, MAPK/ERK, and p38 MAPK, possessed different levels of activation in different MSCs after osteoblast induction. Our conclusions suggest that PDLSCs might be a good potential alternative to BM-MSCs for bone tissue engineering.


Assuntos
Regeneração Óssea/genética , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Engenharia Tecidual , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/crescimento & desenvolvimento , Feminino , Gengiva/citologia , Gengiva/crescimento & desenvolvimento , Humanos , Técnicas In Vitro , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/crescimento & desenvolvimento , Ligamento Periodontal/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA