Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340664

RESUMO

Peroxydisulfate (PDS) and peroxymonosulfate (PMS) could be efficiently activated by heat to generate reactive oxygen species (ROS) for the degradation of organic contaminants. However, defects including the inefficiency treatment and pH dependence of monooxidant process are prominent. In this study, synergy of heat and the PDS-PMS binary oxidant was studied for efficient triclosan (TCS) degradation and apply in rubber wastewater. Under different pH values, the degradation of TCS followed pseudo-first-order kinetics, the reaction rate constant (kobs) value of TCS in heat/PDS/PMS system increased from 1.8 to 4.4 fold and 6.8-49.1 fold when compared to heat/PDS system and heat/PMS system, respectively. Hydroxyl radicals (·OH), sulfate radicals (SO4·-) and singlet oxygen (1O2) were the major ROS for the degradation of TCS in heat/PDS/PMS system. In addition, the steady-state concentrations of ·OH/1O2 and SO4·-/·OH/1O2 increased under acidic conditions and alkaline conditions, respectively. It was concluded that the pH regulated the ROS for degradation of TCS in heat/PDS/PMS system significantly. Based on the analysis of degradation byproducts, it was inferred that the dechlorination, hydroxylation and ether bond breaking reactions occurred during the degradation of TCS. Moreover, the biological toxicity of the ten byproducts was lower than that of TCS was determined. Furthermore, the heat/PDS/PMS system is resistant to the influence of water substrates and can effectively improve the water quality of rubber wastewater. This study provides a novel perspective for efficient degradation of TCS independent of pH in the heat/PDS/PMS system and its application of rubber wastewater.


Assuntos
Triclosan , Poluentes Químicos da Água , Oxidantes/química , Águas Residuárias , Espécies Reativas de Oxigênio , Borracha , Oxirredução , Poluentes Químicos da Água/química , Peróxidos/química
2.
Biotechnol Lett ; 34(9): 1617-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22576282

RESUMO

DNA ladder fragments, regarded as a biochemical hallmark of apoptosis, have been separated quickly and successfully by capillary electrophoresis. Inter-nucleosomal DNA fragmentations induced by xylitol selenite were determined for the first time, while hydroxypropylmethylcellulose (HPMC) was served as the sieving matrix in dynamic sieving capillary electrophoresis. The calibration curve (r(2) = 0.991) was established and multiples of two different nucleosomes (140 and 180 bp) were formed in the presence of xylitol selenite. Selenium compounds inhibited carcinogenesis in animal models, SMMC-7221 cells and several other cells by increasing apoptosis. The described method was useful in elucidating the anticancer activities of xylitol selenite and other selenium compounds, which was more effective to detect small fragments than slab gel electrophoresis.


Assuntos
Apoptose/efeitos dos fármacos , Eletroforese Capilar/métodos , Hepatócitos/efeitos dos fármacos , Selenito de Sódio/toxicidade , Xilitol/toxicidade , Linhagem Celular Tumoral , Fragmentação do DNA , Filtração/métodos , Humanos , Derivados da Hipromelose , Metilcelulose/análogos & derivados , Metilcelulose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA